Scroll:Algebra new >> Elimination method >> ps (4543)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 59x - 39y = 97,       39x - 59y = 1 , 

x =

y =


Answer:_______________




2)  

 51x - 31y = 81,       31x - 51y = 1 , 

x =

y =


Answer:_______________




3)  

 57x - 25y = 81,       25x - 57y = 1 , 

x =

y =


Answer:_______________




4)  

 65x - 33y = 97,       33x - 65y = 1 , 

x =

y =


Answer:_______________




5)  

 54x - 34y = 87,       34x - 54y = 1 , 

x =

y =


Answer:_______________




6)  

 61x - 36y = 96,       36x - 61y = 1 , 

x =

y =


Answer:_______________




7)  

 53x - 37y = 89,       37x - 53y = 1 , 

x =

y =


Answer:_______________




8)  

 61x - 31y = 91,       31x - 61y = 1 , 

x =

y =


Answer:_______________




9)  

 64x - 36y = 99,       36x - 64y = 1 , 

x =

y =


Answer:_______________




10)  

 60x - 40y = 99,       40x - 60y = 1 , 

x =

y =


Answer:_______________




 

1)  

 59x - 39y = 97,       39x - 59y = 1 , 

x = Answer: 2.9

y = Answer: 1.9


SOLUTION 1 :

This system is  linear in x and y 

39x + 59y = 97 ...... (1)

 59x + 39y = 1  ..... (2)

Now, (1) and (2) is a linear system in x and y.

(1) + (2) , we get

39x - 59y = 97   

59x - 39y = 1

 98x - 98y = 98

Dividing by 98, we get,

x - y = 1   .....   (3)

(1) - (2), we get

 39x - 59y = 97

+59x + 39y = 1

20x + 20y = 96

Dividing by 20, we get

 1x + 1y = 4.8  .......   (4)

Solving (3) ans (4) we get

 x - y = 1

x + y = 4.8

   2x = 5.8

x = 5.82

x = 2.9

Substituting x = 2.9 in (3).

2.9 - y = 1

-y = 1- 2.9

-y = -1.9

y = 1.9

The system has two solutions is ( 2.9, 1.9 ).

Verifiction : 

L.H.S. of (1) = 59x - 39y = 59(2.9) - 39(1.9) = 171.1 - 74.1 = 97  R.H.S. of (1)

L.H.S. of (2) = 39x - 59y = 39(2.9) + 59(1.9) = 113.1 - 112.1 = 1 R.H.S.of (2).

 



2)  

 51x - 31y = 81,       31x - 51y = 1 , 

x = Answer: 2.5

y = Answer: 1.5


SOLUTION 1 :

This system is  linear in x and y 

31x + 51y = 81 ...... (1)

 51x + 31y = 1  ..... (2)

Now, (1) and (2) is a linear system in x and y.

(1) + (2) , we get

31x - 51y = 81   

51x - 31y = 1

 82x - 82y = 82

Dividing by 82, we get,

x - y = 1   .....   (3)

(1) - (2), we get

 31x - 51y = 81

+51x + 31y = 1

20x + 20y = 80

Dividing by 20, we get

 1x + 1y = 4  .......   (4)

Solving (3) ans (4) we get

 x - y = 1

x + y = 4

   2x = 5

x = 52

x = 2.5

Substituting x = 2.5 in (3).

2.5 - y = 1

-y = 1- 2.5

-y = -1.5

y = 1.5

The system has two solutions is ( 2.5, 1.5 ).

Verifiction : 

L.H.S. of (1) = 51x - 31y = 51(2.5) - 31(1.5) = 127.5 - 46.5 = 81  R.H.S. of (1)

L.H.S. of (2) = 31x - 51y = 31(2.5) + 51(1.5) = 77.5 - 76.5 = 1 R.H.S.of (2).

 



3)  

 57x - 25y = 81,       25x - 57y = 1 , 

x = Answer: 1.75

y = Answer: 0.75


SOLUTION 1 :

This system is  linear in x and y 

25x + 57y = 81 ...... (1)

 57x + 25y = 1  ..... (2)

Now, (1) and (2) is a linear system in x and y.

(1) + (2) , we get

25x - 57y = 81   

57x - 25y = 1

 82x - 82y = 82

Dividing by 82, we get,

x - y = 1   .....   (3)

(1) - (2), we get

 25x - 57y = 81

+57x + 25y = 1

32x + 32y = 80

Dividing by 32, we get

 1x + 1y = 2.5  .......   (4)

Solving (3) ans (4) we get

 x - y = 1

x + y = 2.5

   2x = 3.5

x = 3.52

x = 1.75

Substituting x = 1.75 in (3).

1.75 - y = 1

-y = 1- 1.75

-y = -0.75

y = 0.75

The system has two solutions is ( 1.75, 0.75 ).

Verifiction : 

L.H.S. of (1) = 57x - 25y = 57(1.75) - 25(0.75) = 99.75 - 18.75 = 81  R.H.S. of (1)

L.H.S. of (2) = 25x - 57y = 25(1.75) + 57(0.75) = 43.75 - 42.75 = 1 R.H.S.of (2).

 



4)  

 65x - 33y = 97,       33x - 65y = 1 , 

x = Answer: 2

y = Answer: 1


SOLUTION 1 :

This system is  linear in x and y 

33x + 65y = 97 ...... (1)

 65x + 33y = 1  ..... (2)

Now, (1) and (2) is a linear system in x and y.

(1) + (2) , we get

33x - 65y = 97   

65x - 33y = 1

 98x - 98y = 98

Dividing by 98, we get,

x - y = 1   .....   (3)

(1) - (2), we get

 33x - 65y = 97

+65x + 33y = 1

32x + 32y = 96

Dividing by 32, we get

 1x + 1y = 3  .......   (4)

Solving (3) ans (4) we get

 x - y = 1

x + y = 3

   2x = 4

x = 42

x = 2

Substituting x = 2 in (3).

2 - y = 1

-y = 1- 2

-y = -1

y = 1

The system has two solutions is ( 2, 1 ).

Verifiction : 

L.H.S. of (1) = 65x - 33y = 65(2) - 33(1) = 130 - 33 = 97  R.H.S. of (1)

L.H.S. of (2) = 33x - 65y = 33(2) + 65(1) = 66 - 65 = 1 R.H.S.of (2).

 



5)  

 54x - 34y = 87,       34x - 54y = 1 , 

x = Answer: 2.65

y = Answer: 1.65


SOLUTION 1 :

This system is  linear in x and y 

34x + 54y = 87 ...... (1)

 54x + 34y = 1  ..... (2)

Now, (1) and (2) is a linear system in x and y.

(1) + (2) , we get

34x - 54y = 87   

54x - 34y = 1

 88x - 88y = 88

Dividing by 88, we get,

x - y = 1   .....   (3)

(1) - (2), we get

 34x - 54y = 87

+54x + 34y = 1

20x + 20y = 86

Dividing by 20, we get

 1x + 1y = 4.3  .......   (4)

Solving (3) ans (4) we get

 x - y = 1

x + y = 4.3

   2x = 5.3

x = 5.32

x = 2.65

Substituting x = 2.65 in (3).

2.65 - y = 1

-y = 1- 2.65

-y = -1.65

y = 1.65

The system has two solutions is ( 2.65, 1.65 ).

Verifiction : 

L.H.S. of (1) = 54x - 34y = 54(2.65) - 34(1.65) = 143.1 - 56.1 = 87  R.H.S. of (1)

L.H.S. of (2) = 34x - 54y = 34(2.65) + 54(1.65) = 90.1 - 89.1 = 1 R.H.S.of (2).

 



6)  

 61x - 36y = 96,       36x - 61y = 1 , 

x = Answer: 2.4

y = Answer: 1.4


SOLUTION 1 :

This system is  linear in x and y 

36x + 61y = 96 ...... (1)

 61x + 36y = 1  ..... (2)

Now, (1) and (2) is a linear system in x and y.

(1) + (2) , we get

36x - 61y = 96   

61x - 36y = 1

 97x - 97y = 97

Dividing by 97, we get,

x - y = 1   .....   (3)

(1) - (2), we get

 36x - 61y = 96

+61x + 36y = 1

25x + 25y = 95

Dividing by 25, we get

 1x + 1y = 3.8  .......   (4)

Solving (3) ans (4) we get

 x - y = 1

x + y = 3.8

   2x = 4.8

x = 4.82

x = 2.4

Substituting x = 2.4 in (3).

2.4 - y = 1

-y = 1- 2.4

-y = -1.4

y = 1.4

The system has two solutions is ( 2.4, 1.4 ).

Verifiction : 

L.H.S. of (1) = 61x - 36y = 61(2.4) - 36(1.4) = 146.4 - 50.4 = 96  R.H.S. of (1)

L.H.S. of (2) = 36x - 61y = 36(2.4) + 61(1.4) = 86.4 - 85.4 = 1 R.H.S.of (2).

 



7)  

 53x - 37y = 89,       37x - 53y = 1 , 

x = Answer: 3.25

y = Answer: 2.25


SOLUTION 1 :

This system is  linear in x and y 

37x + 53y = 89 ...... (1)

 53x + 37y = 1  ..... (2)

Now, (1) and (2) is a linear system in x and y.

(1) + (2) , we get

37x - 53y = 89   

53x - 37y = 1

 90x - 90y = 90

Dividing by 90, we get,

x - y = 1   .....   (3)

(1) - (2), we get

 37x - 53y = 89

+53x + 37y = 1

16x + 16y = 88

Dividing by 16, we get

 1x + 1y = 5.5  .......   (4)

Solving (3) ans (4) we get

 x - y = 1

x + y = 5.5

   2x = 6.5

x = 6.52

x = 3.25

Substituting x = 3.25 in (3).

3.25 - y = 1

-y = 1- 3.25

-y = -2.25

y = 2.25

The system has two solutions is ( 3.25, 2.25 ).

Verifiction : 

L.H.S. of (1) = 53x - 37y = 53(3.25) - 37(2.25) = 172.25 - 83.25 = 89  R.H.S. of (1)

L.H.S. of (2) = 37x - 53y = 37(3.25) + 53(2.25) = 120.25 - 119.25 = 1 R.H.S.of (2).

 



8)  

 61x - 31y = 91,       31x - 61y = 1 , 

x = Answer: 2

y = Answer: 1


SOLUTION 1 :

This system is  linear in x and y 

31x + 61y = 91 ...... (1)

 61x + 31y = 1  ..... (2)

Now, (1) and (2) is a linear system in x and y.

(1) + (2) , we get

31x - 61y = 91   

61x - 31y = 1

 92x - 92y = 92

Dividing by 92, we get,

x - y = 1   .....   (3)

(1) - (2), we get

 31x - 61y = 91

+61x + 31y = 1

30x + 30y = 90

Dividing by 30, we get

 1x + 1y = 3  .......   (4)

Solving (3) ans (4) we get

 x - y = 1

x + y = 3

   2x = 4

x = 42

x = 2

Substituting x = 2 in (3).

2 - y = 1

-y = 1- 2

-y = -1

y = 1

The system has two solutions is ( 2, 1 ).

Verifiction : 

L.H.S. of (1) = 61x - 31y = 61(2) - 31(1) = 122 - 31 = 91  R.H.S. of (1)

L.H.S. of (2) = 31x - 61y = 31(2) + 61(1) = 62 - 61 = 1 R.H.S.of (2).

 



9)  

 64x - 36y = 99,       36x - 64y = 1 , 

x = Answer: 2.25

y = Answer: 1.25


SOLUTION 1 :

This system is  linear in x and y 

36x + 64y = 99 ...... (1)

 64x + 36y = 1  ..... (2)

Now, (1) and (2) is a linear system in x and y.

(1) + (2) , we get

36x - 64y = 99   

64x - 36y = 1

 100x - 100y = 100

Dividing by 100, we get,

x - y = 1   .....   (3)

(1) - (2), we get

 36x - 64y = 99

+64x + 36y = 1

28x + 28y = 98

Dividing by 28, we get

 1x + 1y = 3.5  .......   (4)

Solving (3) ans (4) we get

 x - y = 1

x + y = 3.5

   2x = 4.5

x = 4.52

x = 2.25

Substituting x = 2.25 in (3).

2.25 - y = 1

-y = 1- 2.25

-y = -1.25

y = 1.25

The system has two solutions is ( 2.25, 1.25 ).

Verifiction : 

L.H.S. of (1) = 64x - 36y = 64(2.25) - 36(1.25) = 144 - 45 = 99  R.H.S. of (1)

L.H.S. of (2) = 36x - 64y = 36(2.25) + 64(1.25) = 81 - 80 = 1 R.H.S.of (2).

 



10)  

 60x - 40y = 99,       40x - 60y = 1 , 

x = Answer: 2.95

y = Answer: 1.95


SOLUTION 1 :

This system is  linear in x and y 

40x + 60y = 99 ...... (1)

 60x + 40y = 1  ..... (2)

Now, (1) and (2) is a linear system in x and y.

(1) + (2) , we get

40x - 60y = 99   

60x - 40y = 1

 100x - 100y = 100

Dividing by 100, we get,

x - y = 1   .....   (3)

(1) - (2), we get

 40x - 60y = 99

+60x + 40y = 1

20x + 20y = 98

Dividing by 20, we get

 1x + 1y = 4.9  .......   (4)

Solving (3) ans (4) we get

 x - y = 1

x + y = 4.9

   2x = 5.9

x = 5.92

x = 2.95

Substituting x = 2.95 in (3).

2.95 - y = 1

-y = 1- 2.95

-y = -1.95

y = 1.95

The system has two solutions is ( 2.95, 1.95 ).

Verifiction : 

L.H.S. of (1) = 60x - 40y = 60(2.95) - 40(1.95) = 177 - 78 = 99  R.H.S. of (1)

L.H.S. of (2) = 40x - 60y = 40(2.95) + 60(1.95) = 118 - 117 = 1 R.H.S.of (2).