Written Instructions:
For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..
For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.
Leave your answers in the simplest form or correct to two decimal places.
1) x + = 4, + 2y = 5 y = x = Answer:_______________ |
2) x + = 4, + 2y = 8 y = x = Answer:_______________ |
3) x + = 4, + 2y = 5 y = x = Answer:_______________ |
4) x + = 4, + 2y = 7 y = x = Answer:_______________ |
5) x + = 4, + 2y = 5 y = x = Answer:_______________ |
6) x + = 5, + 2y = 8 y = x = Answer:_______________ |
7) x + = 4, + 2y = 5 y = x = Answer:_______________ |
8) x + = 6, + 2y = 9 y = x = Answer:_______________ |
9) x + = 4, + 2y = 5 y = x = Answer:_______________ |
10) x + = 4, + 2y = 7 y = x = Answer:_______________ |
1) x + = 4, + 2y = 5 y = Answer: 2 x = Answer: 3 SOLUTION 1 : This system is linear in x and y. x + = 4 ....... (1) /2 = 4x2 2x + y = 8 ...... (2) + 2y = 5 ...... (3) (x + = 5x3 x + 6y = 15 ...... (4) Solving (2) and (4), we get (2) ⇒ 2x + y = 8 (4) x (2) ⇒ 2x + 12y = 30 -11y = -22 y = = 2 y = 2 Substituting y = 2 in (2) 2x + 2 = 8 2x = 8 - 2 2x = 6 x = x = 3. The solution is (2, 3). Verification : L.H.S of (1) = x + = 3 + = 3 + 1 = 4 = R.H.S. of (1) L.H.S of (3) = + 2y = + 2(2) = 1 + 4 = 5 = R.H.S . of (2).
|
2) x + = 4, + 2y = 8 y = Answer: 3.64 x = Answer: 2.18 SOLUTION 1 : This system is linear in x and y. x + = 4 ....... (1) /2 = 4x2 2x + y = 8 ...... (2) + 2y = 8 ...... (3) (x + = 8x3 x + 6y = 24 ...... (4) Solving (2) and (4), we get (2) ⇒ 2x + y = 8 (4) x (2) ⇒ 2x + 12y = 48 -11y = -40 y = = 3.64 y = 3.64 Substituting y = 3.64 in (2) 2x + 3.64 = 8 2x = 8 - 3.64 2x = 4.36 x = x = 2.18. The solution is (3.64, 2.18). Verification : L.H.S of (1) = x + = 2.18 + = 2.18 + 1.82 = 4 = R.H.S. of (1) L.H.S of (3) = + 2y = + 2(3.64) = 0.73 + 7.28 = 8.01 = R.H.S . of (2).
|
3) x + = 4, + 2y = 5 y = Answer: 2 x = Answer: 3 SOLUTION 1 : This system is linear in x and y. x + = 4 ....... (1) /2 = 4x2 2x + y = 8 ...... (2) + 2y = 5 ...... (3) (x + = 5x3 x + 6y = 15 ...... (4) Solving (2) and (4), we get (2) ⇒ 2x + y = 8 (4) x (2) ⇒ 2x + 12y = 30 -11y = -22 y = = 2 y = 2 Substituting y = 2 in (2) 2x + 2 = 8 2x = 8 - 2 2x = 6 x = x = 3. The solution is (2, 3). Verification : L.H.S of (1) = x + = 3 + = 3 + 1 = 4 = R.H.S. of (1) L.H.S of (3) = + 2y = + 2(2) = 1 + 4 = 5 = R.H.S . of (2).
|
4) x + = 4, + 2y = 7 y = Answer: 3.09 x = Answer: 2.46 SOLUTION 1 : This system is linear in x and y. x + = 4 ....... (1) /2 = 4x2 2x + y = 8 ...... (2) + 2y = 7 ...... (3) (x + = 7x3 x + 6y = 21 ...... (4) Solving (2) and (4), we get (2) ⇒ 2x + y = 8 (4) x (2) ⇒ 2x + 12y = 42 -11y = -34 y = = 3.09 y = 3.09 Substituting y = 3.09 in (2) 2x + 3.09 = 8 2x = 8 - 3.09 2x = 4.91 x = x = 2.46. The solution is (3.09, 2.46). Verification : L.H.S of (1) = x + = 2.46 + = 2.46 + 1.55 = 4.01 = R.H.S. of (1) L.H.S of (3) = + 2y = + 2(3.09) = 0.82 + 6.18 = 7 = R.H.S . of (2).
|
5) x + = 4, + 2y = 5 y = Answer: 2 x = Answer: 3 SOLUTION 1 : This system is linear in x and y. x + = 4 ....... (1) /2 = 4x2 2x + y = 8 ...... (2) + 2y = 5 ...... (3) (x + = 5x3 x + 6y = 15 ...... (4) Solving (2) and (4), we get (2) ⇒ 2x + y = 8 (4) x (2) ⇒ 2x + 12y = 30 -11y = -22 y = = 2 y = 2 Substituting y = 2 in (2) 2x + 2 = 8 2x = 8 - 2 2x = 6 x = x = 3. The solution is (2, 3). Verification : L.H.S of (1) = x + = 3 + = 3 + 1 = 4 = R.H.S. of (1) L.H.S of (3) = + 2y = + 2(2) = 1 + 4 = 5 = R.H.S . of (2).
|
6) x + = 5, + 2y = 8 y = Answer: 3.35 x = Answer: 3.88 SOLUTION 1 : This system is linear in x and y. x + = 5 ....... (1) /3 = 5x3 3x + y = 15 ...... (2) + 2y = 8 ...... (3) (x + = 8x3 x + 6y = 24 ...... (4) Solving (2) and (4), we get (2) ⇒ 3x + y = 15 (4) x (3) ⇒ 3x + 18y = 72 -17y = -57 y = = 3.35 y = 3.35 Substituting y = 3.35 in (2) 3x + 3.35 = 15 3x = 15 - 3.35 3x = 11.65 x = x = 3.88. The solution is (3.35, 3.88). Verification : L.H.S of (1) = x + = 3.88 + = 3.88 + 1.12 = 5 = R.H.S. of (1) L.H.S of (3) = + 2y = + 2(3.35) = 1.29 + 6.70 = 7.99 = R.H.S . of (2).
|
7) x + = 4, + 2y = 5 y = Answer: 2 x = Answer: 3 SOLUTION 1 : This system is linear in x and y. x + = 4 ....... (1) /2 = 4x2 2x + y = 8 ...... (2) + 2y = 5 ...... (3) (x + = 5x3 x + 6y = 15 ...... (4) Solving (2) and (4), we get (2) ⇒ 2x + y = 8 (4) x (2) ⇒ 2x + 12y = 30 -11y = -22 y = = 2 y = 2 Substituting y = 2 in (2) 2x + 2 = 8 2x = 8 - 2 2x = 6 x = x = 3. The solution is (2, 3). Verification : L.H.S of (1) = x + = 3 + = 3 + 1 = 4 = R.H.S. of (1) L.H.S of (3) = + 2y = + 2(2) = 1 + 4 = 5 = R.H.S . of (2).
|
8) x + = 6, + 2y = 9 y = Answer: 3.71 x = Answer: 4.76 SOLUTION 1 : This system is linear in x and y. x + = 6 ....... (1) /3 = 6x3 3x + y = 18 ...... (2) + 2y = 9 ...... (3) (x + = 9x3 x + 6y = 27 ...... (4) Solving (2) and (4), we get (2) ⇒ 3x + y = 18 (4) x (3) ⇒ 3x + 18y = 81 -17y = -63 y = = 3.71 y = 3.71 Substituting y = 3.71 in (2) 3x + 3.71 = 18 3x = 18 - 3.71 3x = 14.29 x = x = 4.76. The solution is (3.71, 4.76). Verification : L.H.S of (1) = x + = 4.76 + = 4.76 + 1.24 = 6 = R.H.S. of (1) L.H.S of (3) = + 2y = + 2(3.71) = 1.59 + 7.42 = 9.01 = R.H.S . of (2).
|
9) x + = 4, + 2y = 5 y = Answer: 2 x = Answer: 3 SOLUTION 1 : This system is linear in x and y. x + = 4 ....... (1) /2 = 4x2 2x + y = 8 ...... (2) + 2y = 5 ...... (3) (x + = 5x3 x + 6y = 15 ...... (4) Solving (2) and (4), we get (2) ⇒ 2x + y = 8 (4) x (2) ⇒ 2x + 12y = 30 -11y = -22 y = = 2 y = 2 Substituting y = 2 in (2) 2x + 2 = 8 2x = 8 - 2 2x = 6 x = x = 3. The solution is (2, 3). Verification : L.H.S of (1) = x + = 3 + = 3 + 1 = 4 = R.H.S. of (1) L.H.S of (3) = + 2y = + 2(2) = 1 + 4 = 5 = R.H.S . of (2).
|
10) x + = 4, + 2y = 7 y = Answer: 3.20 x = Answer: 2.40 SOLUTION 1 : This system is linear in x and y. x + = 4 ....... (1) /2 = 4x2 2x + y = 8 ...... (2) + 2y = 7 ...... (3) (x + = 7x4 x + 8y = 28 ...... (4) Solving (2) and (4), we get (2) ⇒ 2x + y = 8 (4) x (2) ⇒ 2x + 16y = 56 -15y = -48 y = = 3.20 y = 3.20 Substituting y = 3.20 in (2) 2x + 3.20 = 8 2x = 8 - 3.20 2x = 4.8 x = x = 2.40. The solution is (3.20, 2.40). Verification : L.H.S of (1) = x + = 2.40 + = 2.40 + 1.60 = 4 = R.H.S. of (1) L.H.S of (3) = + 2y = + 2(3.20) = 0.60 + 6.40 = 7 = R.H.S . of (2).
|