Scroll:Probability >> probability >> ps (4492)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 A jar contains 156 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 26 and the probability of drawing a green marble is 712. How many white marbles does the jar contain


Answer:_______________




2)  

 A jar contains 144 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 18 and the probability of drawing a green marble is 516. How many white marbles does the jar contain


Answer:_______________




3)  

 A jar contains 96 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 212 and the probability of drawing a green marble is 724. How many white marbles does the jar contain


Answer:_______________




4)  

 A jar contains 144 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 26 and the probability of drawing a green marble is 512. How many white marbles does the jar contain


Answer:_______________




5)  

 A jar contains 184 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 14 and the probability of drawing a green marble is 78. How many white marbles does the jar contain


Answer:_______________




6)  

 A jar contains 150 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 215 and the probability of drawing a green marble is 530. How many white marbles does the jar contain


Answer:_______________




7)  

 A jar contains 96 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 18 and the probability of drawing a green marble is 716. How many white marbles does the jar contain


Answer:_______________




8)  

 A jar contains 180 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 115 and the probability of drawing a green marble is 530. How many white marbles does the jar contain


Answer:_______________




9)  

 A jar contains 162 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 29 and the probability of drawing a green marble is 518. How many white marbles does the jar contain


Answer:_______________




10)  

 A jar contains 140 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 210 and the probability of drawing a green marble is 720. How many white marbles does the jar contain


Answer:_______________




 

1)  

 A jar contains 156 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 26 and the probability of drawing a green marble is 712. How many white marbles does the jar contain

Answer: 13


SOLUTION 1 :

A jar contains 156 marbles each of which is blue, green and white. 

n(S) = 156.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 26 .

Probability of drawing green marbles, P(G) = 712.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x156

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    26 + 712 + x156 = 1

                                   52 + 91 + x ÷ 156 = 1  LCM = 156

                                    143 + x = 156

                                    x = 156 - 143

                                   x = 13.

Number of white balls = 13



2)  

 A jar contains 144 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 18 and the probability of drawing a green marble is 516. How many white marbles does the jar contain

Answer: 81


SOLUTION 1 :

A jar contains 144 marbles each of which is blue, green and white. 

n(S) = 144.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 18 .

Probability of drawing green marbles, P(G) = 516.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x144

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    18 + 516 + x144 = 1

                                   18 + 45 + x ÷ 144 = 1  LCM = 144

                                    63 + x = 144

                                    x = 144 - 63

                                   x = 81.

Number of white balls = 81



3)  

 A jar contains 96 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 212 and the probability of drawing a green marble is 724. How many white marbles does the jar contain

Answer: 52


SOLUTION 1 :

A jar contains 96 marbles each of which is blue, green and white. 

n(S) = 96.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 212 .

Probability of drawing green marbles, P(G) = 724.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x96

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    212 + 724 + x96 = 1

                                   16 + 28 + x ÷ 96 = 1  LCM = 96

                                    44 + x = 96

                                    x = 96 - 44

                                   x = 52.

Number of white balls = 52



4)  

 A jar contains 144 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 26 and the probability of drawing a green marble is 512. How many white marbles does the jar contain

Answer: 36


SOLUTION 1 :

A jar contains 144 marbles each of which is blue, green and white. 

n(S) = 144.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 26 .

Probability of drawing green marbles, P(G) = 512.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x144

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    26 + 512 + x144 = 1

                                   48 + 60 + x ÷ 144 = 1  LCM = 144

                                    108 + x = 144

                                    x = 144 - 108

                                   x = 36.

Number of white balls = 36



5)  

 A jar contains 184 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 14 and the probability of drawing a green marble is 78. How many white marbles does the jar contain

Answer: -23


SOLUTION 1 :

A jar contains 184 marbles each of which is blue, green and white. 

n(S) = 184.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 14 .

Probability of drawing green marbles, P(G) = 78.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x184

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    14 + 78 + x184 = 1

                                   46 + 161 + x ÷ 184 = 1  LCM = 184

                                    207 + x = 184

                                    x = 184 - 207

                                   x = -23.

Number of white balls = -23



6)  

 A jar contains 150 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 215 and the probability of drawing a green marble is 530. How many white marbles does the jar contain

Answer: 105


SOLUTION 1 :

A jar contains 150 marbles each of which is blue, green and white. 

n(S) = 150.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 215 .

Probability of drawing green marbles, P(G) = 530.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x150

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    215 + 530 + x150 = 1

                                   20 + 25 + x ÷ 150 = 1  LCM = 150

                                    45 + x = 150

                                    x = 150 - 45

                                   x = 105.

Number of white balls = 105



7)  

 A jar contains 96 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 18 and the probability of drawing a green marble is 716. How many white marbles does the jar contain

Answer: 42


SOLUTION 1 :

A jar contains 96 marbles each of which is blue, green and white. 

n(S) = 96.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 18 .

Probability of drawing green marbles, P(G) = 716.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x96

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    18 + 716 + x96 = 1

                                   12 + 42 + x ÷ 96 = 1  LCM = 96

                                    54 + x = 96

                                    x = 96 - 54

                                   x = 42.

Number of white balls = 42



8)  

 A jar contains 180 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 115 and the probability of drawing a green marble is 530. How many white marbles does the jar contain

Answer: 138


SOLUTION 1 :

A jar contains 180 marbles each of which is blue, green and white. 

n(S) = 180.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 115 .

Probability of drawing green marbles, P(G) = 530.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x180

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    115 + 530 + x180 = 1

                                   12 + 30 + x ÷ 180 = 1  LCM = 180

                                    42 + x = 180

                                    x = 180 - 42

                                   x = 138.

Number of white balls = 138



9)  

 A jar contains 162 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 29 and the probability of drawing a green marble is 518. How many white marbles does the jar contain

Answer: 81


SOLUTION 1 :

A jar contains 162 marbles each of which is blue, green and white. 

n(S) = 162.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 29 .

Probability of drawing green marbles, P(G) = 518.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x162

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    29 + 518 + x162 = 1

                                   36 + 45 + x ÷ 162 = 1  LCM = 162

                                    81 + x = 162

                                    x = 162 - 81

                                   x = 81.

Number of white balls = 81



10)  

 A jar contains 140 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 210 and the probability of drawing a green marble is 720. How many white marbles does the jar contain

Answer: 63


SOLUTION 1 :

A jar contains 140 marbles each of which is blue, green and white. 

n(S) = 140.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 210 .

Probability of drawing green marbles, P(G) = 720.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x140

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    210 + 720 + x140 = 1

                                   28 + 49 + x ÷ 140 = 1  LCM = 140

                                    77 + x = 140

                                    x = 140 - 77

                                   x = 63.

Number of white balls = 63