Scroll:set and function >> Exercice 1.3 >> saq (4261)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {4,5,6}, B = {5,6,7,8} and C = {6,7,8,9}

 n(A∪B∪C) =


Answer:_______________




2)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {h,e,v,m,w}, B = {h,l,f} and C = {h,w,h}

 n(A∪B∪C) =



Answer:_______________




3)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

 n(A∪B∪C) =


Answer:_______________




4)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {d,p,e,k,j}, B = {d,t,m} and C = {d,j,d}

 n(A∪B∪C) =



Answer:_______________




5)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {6,7,8}, B = {7,8,9,10} and C = {8,9,10,11}

 n(A∪B∪C) =


Answer:_______________




6)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {g,b,t,n,h}, B = {q,x,y} and C = {g,h,q}

 n(A∪B∪C) =



Answer:_______________




7)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

 n(A∪B∪C) =


Answer:_______________




8)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {u,e,g,m,d}, B = {e,k,s} and C = {u,d,e}

 n(A∪B∪C) =



Answer:_______________




9)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

 n(A∪B∪C) =


Answer:_______________




10)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {x,i,v,r,q}, B = {b,w,p} and C = {x,q,b}

 n(A∪B∪C) =



Answer:_______________




 

1)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {4,5,6}, B = {5,6,7,8} and C = {6,7,8,9}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {4,5,6}, B = {5,6,7,8} and C = {6,7,8,9}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {4,5,6} ∩ {5,6,7,8}

           = {5,6}

⇒       n(A∩B) = 2

 (B∩C) = {5,6,7,8} ∩  {6,7,8,9}

           =  {6,7,8}

⇒     n(B∩C)  = 3

 (AC)  = {4,5,6} ∩ {6,7,8,9}

            = {6}

⇒       n(A∩C) = 1

(A∪B∪C) = [{4,5,6} ∪ {5,6,7,8}∪ {6,7,8,9}]

               = {4,5,6,7,8}∪{6,7,8,9}

        = {4,5,6,7,8,9}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{4,5,6} ∩ {5,6,7,8} ∩ {6,7,8,9}]

                  = {5,6} ∩ {6,7,8,9}

                  = {6}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



2)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {p,n,e,c,v}, B = {m,f,w} and C = {p,v,m}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {p,n,e,c,v}, B = {m,f,w} and C = {p,v,m}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {p,n,e,c,v} ∩ {m,f,w}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {m,f,w} ∩ {p,v,m}

           =  {m}

⇒     n(B∩C)  = 1

 (AC)  = {p,n,e,c,v} ∩ {p,v,m}

            = {p,v}

⇒       n(A∩C) = 2

(A∪B∪C) = [{p,n,e,c,v} ∪ {m,f,w}∪{p,v,m}

               = {p,n,e,c,v,m,f,w}∪{p,v,m}

        = {p,n,e,c,v,m,f,w}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{p,n,e,c,v} ∩ {m,f,w} ∩ {p,v,m}]

                  = { } ∩ {e,c,v,m}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



3)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {5,6,7} ∩ {6,7,8,9}

           = {6,7}

⇒       n(A∩B) = 2

 (B∩C) = {6,7,8,9} ∩  {7,8,9,10}

           =  {7,8,9}

⇒     n(B∩C)  = 3

 (AC)  = {5,6,7} ∩ {7,8,9,10}

            = {7}

⇒       n(A∩C) = 1

(A∪B∪C) = [{5,6,7} ∪ {6,7,8,9}∪ {7,8,9,10}]

               = {5,6,7,8,9}∪{7,8,9,10}

        = {5,6,7,8,9,10}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{5,6,7} ∩ {6,7,8,9} ∩ {7,8,9,10}]

                  = {6,7} ∩ {7,8,9,10}

                  = {7}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



4)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {l,c,g,w,o}, B = {m,r,n} and C = {l,o,m}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {l,c,g,w,o}, B = {m,r,n} and C = {l,o,m}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {l,c,g,w,o} ∩ {m,r,n}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {m,r,n} ∩ {l,o,m}

           =  {m}

⇒     n(B∩C)  = 1

 (AC)  = {l,c,g,w,o} ∩ {l,o,m}

            = {l,o}

⇒       n(A∩C) = 2

(A∪B∪C) = [{l,c,g,w,o} ∪ {m,r,n}∪{l,o,m}

               = {l,c,g,w,o,m,r,n}∪{l,o,m}

        = {l,c,g,w,o,m,r,n}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{l,c,g,w,o} ∩ {m,r,n} ∩ {l,o,m}]

                  = { } ∩ {g,w,o,m}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



5)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {6,7,8}, B = {7,8,9,10} and C = {8,9,10,11}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {6,7,8}, B = {7,8,9,10} and C = {8,9,10,11}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {6,7,8} ∩ {7,8,9,10}

           = {7,8}

⇒       n(A∩B) = 2

 (B∩C) = {7,8,9,10} ∩  {8,9,10,11}

           =  {8,9,10}

⇒     n(B∩C)  = 3

 (AC)  = {6,7,8} ∩ {8,9,10,11}

            = {8}

⇒       n(A∩C) = 1

(A∪B∪C) = [{6,7,8} ∪ {7,8,9,10}∪ {8,9,10,11}]

               = {6,7,8,9,10}∪{8,9,10,11}

        = {6,7,8,9,10,11}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{6,7,8} ∩ {7,8,9,10} ∩ {8,9,10,11}]

                  = {7,8} ∩ {8,9,10,11}

                  = {8}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



6)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {s,r,x,g,y}, B = {f,r,i} and C = {s,y,f}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {s,r,x,g,y}, B = {f,r,i} and C = {s,y,f}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {s,r,x,g,y} ∩ {f,r,i}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {f,r,i} ∩ {s,y,f}

           =  {f}

⇒     n(B∩C)  = 1

 (AC)  = {s,r,x,g,y} ∩ {s,y,f}

            = {s,y}

⇒       n(A∩C) = 2

(A∪B∪C) = [{s,r,x,g,y} ∪ {f,r,i}∪{s,y,f}

               = {s,r,x,g,y,f,r,i}∪{s,y,f}

        = {s,r,x,g,y,f,r,i}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{s,r,x,g,y} ∩ {f,r,i} ∩ {s,y,f}]

                  = { } ∩ {x,g,y,f}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



7)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {1,2,3} ∩ {2,3,4,5}

           = {2,3}

⇒       n(A∩B) = 2

 (B∩C) = {2,3,4,5} ∩  {3,4,5,6}

           =  {3,4,5}

⇒     n(B∩C)  = 3

 (AC)  = {1,2,3} ∩ {3,4,5,6}

            = {3}

⇒       n(A∩C) = 1

(A∪B∪C) = [{1,2,3} ∪ {2,3,4,5}∪ {3,4,5,6}]

               = {1,2,3,4,5}∪{3,4,5,6}

        = {1,2,3,4,5,6}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{1,2,3} ∩ {2,3,4,5} ∩ {3,4,5,6}]

                  = {2,3} ∩ {3,4,5,6}

                  = {3}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



8)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {u,q,e,y,t}, B = {k,p,q} and C = {u,t,k}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {u,q,e,y,t}, B = {k,p,q} and C = {u,t,k}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {u,q,e,y,t} ∩ {k,p,q}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {k,p,q} ∩ {u,t,k}

           =  {k}

⇒     n(B∩C)  = 1

 (AC)  = {u,q,e,y,t} ∩ {u,t,k}

            = {u,t}

⇒       n(A∩C) = 2

(A∪B∪C) = [{u,q,e,y,t} ∪ {k,p,q}∪{u,t,k}

               = {u,q,e,y,t,k,p,q}∪{u,t,k}

        = {u,q,e,y,t,k,p,q}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{u,q,e,y,t} ∩ {k,p,q} ∩ {u,t,k}]

                  = { } ∩ {e,y,t,k}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



9)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {3,4,5} ∩ {4,5,6,7}

           = {4,5}

⇒       n(A∩B) = 2

 (B∩C) = {4,5,6,7} ∩  {5,6,7,8}

           =  {5,6,7}

⇒     n(B∩C)  = 3

 (AC)  = {3,4,5} ∩ {5,6,7,8}

            = {5}

⇒       n(A∩C) = 1

(A∪B∪C) = [{3,4,5} ∪ {4,5,6,7}∪ {5,6,7,8}]

               = {3,4,5,6,7}∪{5,6,7,8}

        = {3,4,5,6,7,8}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{3,4,5} ∩ {4,5,6,7} ∩ {5,6,7,8}]

                  = {4,5} ∩ {5,6,7,8}

                  = {5}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



10)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {q,v,k,i,e}, B = {z,i,y} and C = {q,e,z}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {q,v,k,i,e}, B = {z,i,y} and C = {q,e,z}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {q,v,k,i,e} ∩ {z,i,y}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {z,i,y} ∩ {q,e,z}

           =  {z}

⇒     n(B∩C)  = 1

 (AC)  = {q,v,k,i,e} ∩ {q,e,z}

            = {q,e}

⇒       n(A∩C) = 2

(A∪B∪C) = [{q,v,k,i,e} ∪ {z,i,y}∪{q,e,z}

               = {q,v,k,i,e,z,i,y}∪{q,e,z}

        = {q,v,k,i,e,z,i,y}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{q,v,k,i,e} ∩ {z,i,y} ∩ {q,e,z}]

                  = { } ∩ {k,i,e,z}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets.