Scroll:set and function >> Exercice 1.3 >> saq (4261)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {r,l,e,d,p}, B = {z,v,b} and C = {r,p,z}

 n(A∪B∪C) =



Answer:_______________




2)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

 n(A∪B∪C) =


Answer:_______________




3)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {w,o,z,y,b}, B = {h,g,d} and C = {w,b,h}

 n(A∪B∪C) =



Answer:_______________




4)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {6,7,8}, B = {7,8,9,10} and C = {8,9,10,11}

 n(A∪B∪C) =


Answer:_______________




5)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {x,i,g,m,s}, B = {j,q,p} and C = {x,s,j}

 n(A∪B∪C) =



Answer:_______________




6)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

 n(A∪B∪C) =


Answer:_______________




7)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {p,f,r,v,h}, B = {w,l,a} and C = {p,h,w}

 n(A∪B∪C) =



Answer:_______________




8)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

 n(A∪B∪C) =


Answer:_______________




9)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {v,r,n,k,p}, B = {b,h,e} and C = {v,p,b}

 n(A∪B∪C) =



Answer:_______________




10)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {2,3,4}, B = {3,4,5,6} and C = {4,5,6,7}

 n(A∪B∪C) =


Answer:_______________




 

1)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {g,u,o,v,t}, B = {f,u,o} and C = {g,t,f}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {g,u,o,v,t}, B = {f,u,o} and C = {g,t,f}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {g,u,o,v,t} ∩ {f,u,o}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {f,u,o} ∩ {g,t,f}

           =  {f}

⇒     n(B∩C)  = 1

 (AC)  = {g,u,o,v,t} ∩ {g,t,f}

            = {g,t}

⇒       n(A∩C) = 2

(A∪B∪C) = [{g,u,o,v,t} ∪ {f,u,o}∪{g,t,f}

               = {g,u,o,v,t,f,u,o}∪{g,t,f}

        = {g,u,o,v,t,f,u,o}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{g,u,o,v,t} ∩ {f,u,o} ∩ {g,t,f}]

                  = { } ∩ {o,v,t,f}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



2)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {3,4,5} ∩ {4,5,6,7}

           = {4,5}

⇒       n(A∩B) = 2

 (B∩C) = {4,5,6,7} ∩  {5,6,7,8}

           =  {5,6,7}

⇒     n(B∩C)  = 3

 (AC)  = {3,4,5} ∩ {5,6,7,8}

            = {5}

⇒       n(A∩C) = 1

(A∪B∪C) = [{3,4,5} ∪ {4,5,6,7}∪ {5,6,7,8}]

               = {3,4,5,6,7}∪{5,6,7,8}

        = {3,4,5,6,7,8}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{3,4,5} ∩ {4,5,6,7} ∩ {5,6,7,8}]

                  = {4,5} ∩ {5,6,7,8}

                  = {5}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



3)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {a,y,f,m,i}, B = {k,b,e} and C = {a,i,k}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {a,y,f,m,i}, B = {k,b,e} and C = {a,i,k}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {a,y,f,m,i} ∩ {k,b,e}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {k,b,e} ∩ {a,i,k}

           =  {k}

⇒     n(B∩C)  = 1

 (AC)  = {a,y,f,m,i} ∩ {a,i,k}

            = {a,i}

⇒       n(A∩C) = 2

(A∪B∪C) = [{a,y,f,m,i} ∪ {k,b,e}∪{a,i,k}

               = {a,y,f,m,i,k,b,e}∪{a,i,k}

        = {a,y,f,m,i,k,b,e}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{a,y,f,m,i} ∩ {k,b,e} ∩ {a,i,k}]

                  = { } ∩ {f,m,i,k}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



4)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {6,7,8}, B = {7,8,9,10} and C = {8,9,10,11}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {6,7,8}, B = {7,8,9,10} and C = {8,9,10,11}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {6,7,8} ∩ {7,8,9,10}

           = {7,8}

⇒       n(A∩B) = 2

 (B∩C) = {7,8,9,10} ∩  {8,9,10,11}

           =  {8,9,10}

⇒     n(B∩C)  = 3

 (AC)  = {6,7,8} ∩ {8,9,10,11}

            = {8}

⇒       n(A∩C) = 1

(A∪B∪C) = [{6,7,8} ∪ {7,8,9,10}∪ {8,9,10,11}]

               = {6,7,8,9,10}∪{8,9,10,11}

        = {6,7,8,9,10,11}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{6,7,8} ∩ {7,8,9,10} ∩ {8,9,10,11}]

                  = {7,8} ∩ {8,9,10,11}

                  = {8}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



5)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {x,l,b,h,f}, B = {r,g,a} and C = {x,f,r}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {x,l,b,h,f}, B = {r,g,a} and C = {x,f,r}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {x,l,b,h,f} ∩ {r,g,a}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {r,g,a} ∩ {x,f,r}

           =  {r}

⇒     n(B∩C)  = 1

 (AC)  = {x,l,b,h,f} ∩ {x,f,r}

            = {x,f}

⇒       n(A∩C) = 2

(A∪B∪C) = [{x,l,b,h,f} ∪ {r,g,a}∪{x,f,r}

               = {x,l,b,h,f,r,g,a}∪{x,f,r}

        = {x,l,b,h,f,r,g,a}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{x,l,b,h,f} ∩ {r,g,a} ∩ {x,f,r}]

                  = { } ∩ {b,h,f,r}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



6)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {5,6,7} ∩ {6,7,8,9}

           = {6,7}

⇒       n(A∩B) = 2

 (B∩C) = {6,7,8,9} ∩  {7,8,9,10}

           =  {7,8,9}

⇒     n(B∩C)  = 3

 (AC)  = {5,6,7} ∩ {7,8,9,10}

            = {7}

⇒       n(A∩C) = 1

(A∪B∪C) = [{5,6,7} ∪ {6,7,8,9}∪ {7,8,9,10}]

               = {5,6,7,8,9}∪{7,8,9,10}

        = {5,6,7,8,9,10}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{5,6,7} ∩ {6,7,8,9} ∩ {7,8,9,10}]

                  = {6,7} ∩ {7,8,9,10}

                  = {7}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



7)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {b,m,v,c,h}, B = {k,o,a} and C = {b,h,k}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {b,m,v,c,h}, B = {k,o,a} and C = {b,h,k}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {b,m,v,c,h} ∩ {k,o,a}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {k,o,a} ∩ {b,h,k}

           =  {k}

⇒     n(B∩C)  = 1

 (AC)  = {b,m,v,c,h} ∩ {b,h,k}

            = {b,h}

⇒       n(A∩C) = 2

(A∪B∪C) = [{b,m,v,c,h} ∪ {k,o,a}∪{b,h,k}

               = {b,m,v,c,h,k,o,a}∪{b,h,k}

        = {b,m,v,c,h,k,o,a}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{b,m,v,c,h} ∩ {k,o,a} ∩ {b,h,k}]

                  = { } ∩ {v,c,h,k}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



8)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {1,2,3} ∩ {2,3,4,5}

           = {2,3}

⇒       n(A∩B) = 2

 (B∩C) = {2,3,4,5} ∩  {3,4,5,6}

           =  {3,4,5}

⇒     n(B∩C)  = 3

 (AC)  = {1,2,3} ∩ {3,4,5,6}

            = {3}

⇒       n(A∩C) = 1

(A∪B∪C) = [{1,2,3} ∪ {2,3,4,5}∪ {3,4,5,6}]

               = {1,2,3,4,5}∪{3,4,5,6}

        = {1,2,3,4,5,6}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{1,2,3} ∩ {2,3,4,5} ∩ {3,4,5,6}]

                  = {2,3} ∩ {3,4,5,6}

                  = {3}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



9)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {x,m,t,v,s}, B = {j,p,k} and C = {x,s,j}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {x,m,t,v,s}, B = {j,p,k} and C = {x,s,j}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {x,m,t,v,s} ∩ {j,p,k}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {j,p,k} ∩ {x,s,j}

           =  {j}

⇒     n(B∩C)  = 1

 (AC)  = {x,m,t,v,s} ∩ {x,s,j}

            = {x,s}

⇒       n(A∩C) = 2

(A∪B∪C) = [{x,m,t,v,s} ∪ {j,p,k}∪{x,s,j}

               = {x,m,t,v,s,j,p,k}∪{x,s,j}

        = {x,m,t,v,s,j,p,k}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{x,m,t,v,s} ∩ {j,p,k} ∩ {x,s,j}]

                  = { } ∩ {t,v,s,j}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



10)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {2,3,4}, B = {3,4,5,6} and C = {4,5,6,7}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {2,3,4}, B = {3,4,5,6} and C = {4,5,6,7}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {2,3,4} ∩ {3,4,5,6}

           = {3,4}

⇒       n(A∩B) = 2

 (B∩C) = {3,4,5,6} ∩  {4,5,6,7}

           =  {4,5,6}

⇒     n(B∩C)  = 3

 (AC)  = {2,3,4} ∩ {4,5,6,7}

            = {4}

⇒       n(A∩C) = 1

(A∪B∪C) = [{2,3,4} ∪ {3,4,5,6}∪ {4,5,6,7}]

               = {2,3,4,5,6}∪{4,5,6,7}

        = {2,3,4,5,6,7}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{2,3,4} ∩ {3,4,5,6} ∩ {4,5,6,7}]

                  = {3,4} ∩ {4,5,6,7}

                  = {4}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets.