Scroll:set and function >> Exercice 1.3 >> saq (4261)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {q,w,f,a,s}, B = {g,k,t} and C = {q,s,g}

 n(A∪B∪C) =



Answer:_______________




2)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

 n(A∪B∪C) =


Answer:_______________




3)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {w,v,r,n,a}, B = {q,z,y} and C = {w,a,q}

 n(A∪B∪C) =



Answer:_______________




4)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

 n(A∪B∪C) =


Answer:_______________




5)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {t,n,r,v,u}, B = {k,h,z} and C = {t,u,k}

 n(A∪B∪C) =



Answer:_______________




6)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {6,7,8}, B = {7,8,9,10} and C = {8,9,10,11}

 n(A∪B∪C) =


Answer:_______________




7)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {o,n,a,c,z}, B = {u,k,c} and C = {o,z,u}

 n(A∪B∪C) =



Answer:_______________




8)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

 n(A∪B∪C) =


Answer:_______________




9)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {e,o,h,r,k}, B = {z,e,u} and C = {e,k,z}

 n(A∪B∪C) =



Answer:_______________




10)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {4,5,6}, B = {5,6,7,8} and C = {6,7,8,9}

 n(A∪B∪C) =


Answer:_______________




 

1)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {q,n,k,w,e}, B = {s,y,v} and C = {q,e,s}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {q,n,k,w,e}, B = {s,y,v} and C = {q,e,s}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {q,n,k,w,e} ∩ {s,y,v}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {s,y,v} ∩ {q,e,s}

           =  {s}

⇒     n(B∩C)  = 1

 (AC)  = {q,n,k,w,e} ∩ {q,e,s}

            = {q,e}

⇒       n(A∩C) = 2

(A∪B∪C) = [{q,n,k,w,e} ∪ {s,y,v}∪{q,e,s}

               = {q,n,k,w,e,s,y,v}∪{q,e,s}

        = {q,n,k,w,e,s,y,v}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{q,n,k,w,e} ∩ {s,y,v} ∩ {q,e,s}]

                  = { } ∩ {k,w,e,s}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



2)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {1,2,3} ∩ {2,3,4,5}

           = {2,3}

⇒       n(A∩B) = 2

 (B∩C) = {2,3,4,5} ∩  {3,4,5,6}

           =  {3,4,5}

⇒     n(B∩C)  = 3

 (AC)  = {1,2,3} ∩ {3,4,5,6}

            = {3}

⇒       n(A∩C) = 1

(A∪B∪C) = [{1,2,3} ∪ {2,3,4,5}∪ {3,4,5,6}]

               = {1,2,3,4,5}∪{3,4,5,6}

        = {1,2,3,4,5,6}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{1,2,3} ∩ {2,3,4,5} ∩ {3,4,5,6}]

                  = {2,3} ∩ {3,4,5,6}

                  = {3}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



3)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {k,u,c,w,q}, B = {y,l,n} and C = {k,q,y}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {k,u,c,w,q}, B = {y,l,n} and C = {k,q,y}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {k,u,c,w,q} ∩ {y,l,n}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {y,l,n} ∩ {k,q,y}

           =  {y}

⇒     n(B∩C)  = 1

 (AC)  = {k,u,c,w,q} ∩ {k,q,y}

            = {k,q}

⇒       n(A∩C) = 2

(A∪B∪C) = [{k,u,c,w,q} ∪ {y,l,n}∪{k,q,y}

               = {k,u,c,w,q,y,l,n}∪{k,q,y}

        = {k,u,c,w,q,y,l,n}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{k,u,c,w,q} ∩ {y,l,n} ∩ {k,q,y}]

                  = { } ∩ {c,w,q,y}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



4)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {5,6,7} ∩ {6,7,8,9}

           = {6,7}

⇒       n(A∩B) = 2

 (B∩C) = {6,7,8,9} ∩  {7,8,9,10}

           =  {7,8,9}

⇒     n(B∩C)  = 3

 (AC)  = {5,6,7} ∩ {7,8,9,10}

            = {7}

⇒       n(A∩C) = 1

(A∪B∪C) = [{5,6,7} ∪ {6,7,8,9}∪ {7,8,9,10}]

               = {5,6,7,8,9}∪{7,8,9,10}

        = {5,6,7,8,9,10}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{5,6,7} ∩ {6,7,8,9} ∩ {7,8,9,10}]

                  = {6,7} ∩ {7,8,9,10}

                  = {7}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



5)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {n,o,x,f,i}, B = {p,c,j} and C = {n,i,p}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {n,o,x,f,i}, B = {p,c,j} and C = {n,i,p}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {n,o,x,f,i} ∩ {p,c,j}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {p,c,j} ∩ {n,i,p}

           =  {p}

⇒     n(B∩C)  = 1

 (AC)  = {n,o,x,f,i} ∩ {n,i,p}

            = {n,i}

⇒       n(A∩C) = 2

(A∪B∪C) = [{n,o,x,f,i} ∪ {p,c,j}∪{n,i,p}

               = {n,o,x,f,i,p,c,j}∪{n,i,p}

        = {n,o,x,f,i,p,c,j}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{n,o,x,f,i} ∩ {p,c,j} ∩ {n,i,p}]

                  = { } ∩ {x,f,i,p}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



6)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {6,7,8}, B = {7,8,9,10} and C = {8,9,10,11}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {6,7,8}, B = {7,8,9,10} and C = {8,9,10,11}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {6,7,8} ∩ {7,8,9,10}

           = {7,8}

⇒       n(A∩B) = 2

 (B∩C) = {7,8,9,10} ∩  {8,9,10,11}

           =  {8,9,10}

⇒     n(B∩C)  = 3

 (AC)  = {6,7,8} ∩ {8,9,10,11}

            = {8}

⇒       n(A∩C) = 1

(A∪B∪C) = [{6,7,8} ∪ {7,8,9,10}∪ {8,9,10,11}]

               = {6,7,8,9,10}∪{8,9,10,11}

        = {6,7,8,9,10,11}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{6,7,8} ∩ {7,8,9,10} ∩ {8,9,10,11}]

                  = {7,8} ∩ {8,9,10,11}

                  = {8}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



7)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {u,x,f,z,v}, B = {r,j,n} and C = {u,v,r}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {u,x,f,z,v}, B = {r,j,n} and C = {u,v,r}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {u,x,f,z,v} ∩ {r,j,n}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {r,j,n} ∩ {u,v,r}

           =  {r}

⇒     n(B∩C)  = 1

 (AC)  = {u,x,f,z,v} ∩ {u,v,r}

            = {u,v}

⇒       n(A∩C) = 2

(A∪B∪C) = [{u,x,f,z,v} ∪ {r,j,n}∪{u,v,r}

               = {u,x,f,z,v,r,j,n}∪{u,v,r}

        = {u,x,f,z,v,r,j,n}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{u,x,f,z,v} ∩ {r,j,n} ∩ {u,v,r}]

                  = { } ∩ {f,z,v,r}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



8)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {3,4,5} ∩ {4,5,6,7}

           = {4,5}

⇒       n(A∩B) = 2

 (B∩C) = {4,5,6,7} ∩  {5,6,7,8}

           =  {5,6,7}

⇒     n(B∩C)  = 3

 (AC)  = {3,4,5} ∩ {5,6,7,8}

            = {5}

⇒       n(A∩C) = 1

(A∪B∪C) = [{3,4,5} ∪ {4,5,6,7}∪ {5,6,7,8}]

               = {3,4,5,6,7}∪{5,6,7,8}

        = {3,4,5,6,7,8}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{3,4,5} ∩ {4,5,6,7} ∩ {5,6,7,8}]

                  = {4,5} ∩ {5,6,7,8}

                  = {5}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



9)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {f,n,o,h,j}, B = {b,s,f} and C = {f,j,b}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {f,n,o,h,j}, B = {b,s,f} and C = {f,j,b}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {f,n,o,h,j} ∩ {b,s,f}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {b,s,f} ∩ {f,j,b}

           =  {b}

⇒     n(B∩C)  = 1

 (AC)  = {f,n,o,h,j} ∩ {f,j,b}

            = {f,j}

⇒       n(A∩C) = 2

(A∪B∪C) = [{f,n,o,h,j} ∪ {b,s,f}∪{f,j,b}

               = {f,n,o,h,j,b,s,f}∪{f,j,b}

        = {f,n,o,h,j,b,s,f}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{f,n,o,h,j} ∩ {b,s,f} ∩ {f,j,b}]

                  = { } ∩ {o,h,j,b}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



10)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {4,5,6}, B = {5,6,7,8} and C = {6,7,8,9}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {4,5,6}, B = {5,6,7,8} and C = {6,7,8,9}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {4,5,6} ∩ {5,6,7,8}

           = {5,6}

⇒       n(A∩B) = 2

 (B∩C) = {5,6,7,8} ∩  {6,7,8,9}

           =  {6,7,8}

⇒     n(B∩C)  = 3

 (AC)  = {4,5,6} ∩ {6,7,8,9}

            = {6}

⇒       n(A∩C) = 1

(A∪B∪C) = [{4,5,6} ∪ {5,6,7,8}∪ {6,7,8,9}]

               = {4,5,6,7,8}∪{6,7,8,9}

        = {4,5,6,7,8,9}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{4,5,6} ∩ {5,6,7,8} ∩ {6,7,8,9}]

                  = {5,6} ∩ {6,7,8,9}

                  = {6}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets.