Scroll:set and function >> Exercice 1.3 >> saq (4259)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 If A and B are two sets and U is the universal set such that n(U) = 808, n(A) = 341, n(B) = 377 and n(A∪B) = 424,

find n(A‘∪B‘).


Answer:_______________




2)  

 If A and B are two sets and U is the universal set such that n(U) = 801, n(A) = 340, n(B) = 432 and n(A∪B) = 452,

find n(A‘∪B‘).


Answer:_______________




3)  

 If A and B are two sets and U is the universal set such that n(U) = 774, n(A) = 362, n(B) = 422 and n(A∪B) = 480,

find n(A‘∪B‘).


Answer:_______________




4)  

 If A and B are two sets and U is the universal set such that n(U) = 972, n(A) = 379, n(B) = 465 and n(A∪B) = 420,

find n(A‘∪B‘).


Answer:_______________




5)  

 If A and B are two sets and U is the universal set such that n(U) = 922, n(A) = 318, n(B) = 312 and n(A∪B) = 461,

find n(A‘∪B‘).


Answer:_______________




6)  

 If A and B are two sets and U is the universal set such that n(U) = 753, n(A) = 319, n(B) = 343 and n(A∪B) = 486,

find n(A‘∪B‘).


Answer:_______________




7)  

 If A and B are two sets and U is the universal set such that n(U) = 774, n(A) = 307, n(B) = 437 and n(A∪B) = 451,

find n(A‘∪B‘).


Answer:_______________




8)  

 If A and B are two sets and U is the universal set such that n(U) = 849, n(A) = 369, n(B) = 493 and n(A∪B) = 407,

find n(A‘∪B‘).


Answer:_______________




9)  

 If A and B are two sets and U is the universal set such that n(U) = 756, n(A) = 366, n(B) = 393 and n(A∪B) = 475,

find n(A‘∪B‘).


Answer:_______________




10)  

 If A and B are two sets and U is the universal set such that n(U) = 933, n(A) = 342, n(B) = 308 and n(A∪B) = 495,

find n(A‘∪B‘).


Answer:_______________




 

1)  

 If A and B are two sets and U is the universal set such that n(U) = 808, n(A) = 341, n(B) = 377 and n(A∪B) = 424,

find n(A‘∪B‘).

Answer: 514


SOLUTION 1 :

 Given :

n(U) = 808

n(A) = 341

n(B) = 377

   n(A∪B) = 424,

To find : n(A‘∪B‘).

we know that A‘∪B‘ = (A∩B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

∴ n(A∩B) = n(A) + n(B) - n(A∪B)

          = 341 + 377 - 424

         = 718 - 424 = 294

∴ n(A∩B) = 294

 n(A‘B‘) = n[(AB)‘]

                  = n(U) - n(AB)

      = 808 - 294 = 514

   n(A‘∪B‘)  = 514



2)  

 If A and B are two sets and U is the universal set such that n(U) = 801, n(A) = 340, n(B) = 432 and n(A∪B) = 452,

find n(A‘∪B‘).

Answer: 481


SOLUTION 1 :

 Given :

n(U) = 801

n(A) = 340

n(B) = 432

   n(A∪B) = 452,

To find : n(A‘∪B‘).

we know that A‘∪B‘ = (A∩B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

∴ n(A∩B) = n(A) + n(B) - n(A∪B)

          = 340 + 432 - 452

         = 772 - 452 = 320

∴ n(A∩B) = 320

 n(A‘B‘) = n[(AB)‘]

                  = n(U) - n(AB)

      = 801 - 320 = 481

   n(A‘∪B‘)  = 481



3)  

 If A and B are two sets and U is the universal set such that n(U) = 774, n(A) = 362, n(B) = 422 and n(A∪B) = 480,

find n(A‘∪B‘).

Answer: 470


SOLUTION 1 :

 Given :

n(U) = 774

n(A) = 362

n(B) = 422

   n(A∪B) = 480,

To find : n(A‘∪B‘).

we know that A‘∪B‘ = (A∩B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

∴ n(A∩B) = n(A) + n(B) - n(A∪B)

          = 362 + 422 - 480

         = 784 - 480 = 304

∴ n(A∩B) = 304

 n(A‘B‘) = n[(AB)‘]

                  = n(U) - n(AB)

      = 774 - 304 = 470

   n(A‘∪B‘)  = 470



4)  

 If A and B are two sets and U is the universal set such that n(U) = 972, n(A) = 379, n(B) = 465 and n(A∪B) = 420,

find n(A‘∪B‘).

Answer: 548


SOLUTION 1 :

 Given :

n(U) = 972

n(A) = 379

n(B) = 465

   n(A∪B) = 420,

To find : n(A‘∪B‘).

we know that A‘∪B‘ = (A∩B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

∴ n(A∩B) = n(A) + n(B) - n(A∪B)

          = 379 + 465 - 420

         = 844 - 420 = 424

∴ n(A∩B) = 424

 n(A‘B‘) = n[(AB)‘]

                  = n(U) - n(AB)

      = 972 - 424 = 548

   n(A‘∪B‘)  = 548



5)  

 If A and B are two sets and U is the universal set such that n(U) = 922, n(A) = 318, n(B) = 312 and n(A∪B) = 461,

find n(A‘∪B‘).

Answer: 753


SOLUTION 1 :

 Given :

n(U) = 922

n(A) = 318

n(B) = 312

   n(A∪B) = 461,

To find : n(A‘∪B‘).

we know that A‘∪B‘ = (A∩B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

∴ n(A∩B) = n(A) + n(B) - n(A∪B)

          = 318 + 312 - 461

         = 630 - 461 = 169

∴ n(A∩B) = 169

 n(A‘B‘) = n[(AB)‘]

                  = n(U) - n(AB)

      = 922 - 169 = 753

   n(A‘∪B‘)  = 753



6)  

 If A and B are two sets and U is the universal set such that n(U) = 753, n(A) = 319, n(B) = 343 and n(A∪B) = 486,

find n(A‘∪B‘).

Answer: 577


SOLUTION 1 :

 Given :

n(U) = 753

n(A) = 319

n(B) = 343

   n(A∪B) = 486,

To find : n(A‘∪B‘).

we know that A‘∪B‘ = (A∩B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

∴ n(A∩B) = n(A) + n(B) - n(A∪B)

          = 319 + 343 - 486

         = 662 - 486 = 176

∴ n(A∩B) = 176

 n(A‘B‘) = n[(AB)‘]

                  = n(U) - n(AB)

      = 753 - 176 = 577

   n(A‘∪B‘)  = 577



7)  

 If A and B are two sets and U is the universal set such that n(U) = 774, n(A) = 307, n(B) = 437 and n(A∪B) = 451,

find n(A‘∪B‘).

Answer: 481


SOLUTION 1 :

 Given :

n(U) = 774

n(A) = 307

n(B) = 437

   n(A∪B) = 451,

To find : n(A‘∪B‘).

we know that A‘∪B‘ = (A∩B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

∴ n(A∩B) = n(A) + n(B) - n(A∪B)

          = 307 + 437 - 451

         = 744 - 451 = 293

∴ n(A∩B) = 293

 n(A‘B‘) = n[(AB)‘]

                  = n(U) - n(AB)

      = 774 - 293 = 481

   n(A‘∪B‘)  = 481



8)  

 If A and B are two sets and U is the universal set such that n(U) = 849, n(A) = 369, n(B) = 493 and n(A∪B) = 407,

find n(A‘∪B‘).

Answer: 394


SOLUTION 1 :

 Given :

n(U) = 849

n(A) = 369

n(B) = 493

   n(A∪B) = 407,

To find : n(A‘∪B‘).

we know that A‘∪B‘ = (A∩B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

∴ n(A∩B) = n(A) + n(B) - n(A∪B)

          = 369 + 493 - 407

         = 862 - 407 = 455

∴ n(A∩B) = 455

 n(A‘B‘) = n[(AB)‘]

                  = n(U) - n(AB)

      = 849 - 455 = 394

   n(A‘∪B‘)  = 394



9)  

 If A and B are two sets and U is the universal set such that n(U) = 756, n(A) = 366, n(B) = 393 and n(A∪B) = 475,

find n(A‘∪B‘).

Answer: 472


SOLUTION 1 :

 Given :

n(U) = 756

n(A) = 366

n(B) = 393

   n(A∪B) = 475,

To find : n(A‘∪B‘).

we know that A‘∪B‘ = (A∩B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

∴ n(A∩B) = n(A) + n(B) - n(A∪B)

          = 366 + 393 - 475

         = 759 - 475 = 284

∴ n(A∩B) = 284

 n(A‘B‘) = n[(AB)‘]

                  = n(U) - n(AB)

      = 756 - 284 = 472

   n(A‘∪B‘)  = 472



10)  

 If A and B are two sets and U is the universal set such that n(U) = 933, n(A) = 342, n(B) = 308 and n(A∪B) = 495,

find n(A‘∪B‘).

Answer: 778


SOLUTION 1 :

 Given :

n(U) = 933

n(A) = 342

n(B) = 308

   n(A∪B) = 495,

To find : n(A‘∪B‘).

we know that A‘∪B‘ = (A∩B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

∴ n(A∩B) = n(A) + n(B) - n(A∪B)

          = 342 + 308 - 495

         = 650 - 495 = 155

∴ n(A∩B) = 155

 n(A‘B‘) = n[(AB)‘]

                  = n(U) - n(AB)

      = 933 - 155 = 778

   n(A‘∪B‘)  = 778