Scroll:set and function >> Exercice 1.3 >> saq (4258)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 If A and B are two sets and U is the universal set such that n(U) = 1020, n(A) = 390, n(B) = 680 and n(A∩B) = 110,

find n(A‘∩B‘).

  

 


Answer:_______________




2)  

 If A and B are two sets and U is the universal set such that n(U) = 1039, n(A) = 320, n(B) = 579 and n(A∩B) = 191,

find n(A‘∩B‘).



Answer:_______________




3)  

 If A and B are two sets and U is the universal set such that n(U) = 1800, n(A) = 350, n(B) = 600 and n(A∩B) = 150,

find n(A‘∩B‘).

  

 


Answer:_______________




4)  

 If A and B are two sets and U is the universal set such that n(U) = 1370, n(A) = 370, n(B) = 660 and n(A∩B) = 170,

find n(A‘∩B‘).

  

 


Answer:_______________




5)  

 If A and B are two sets and U is the universal set such that n(U) = 1760, n(A) = 304, n(B) = 539 and n(A∩B) = 139,

find n(A‘∩B‘).



Answer:_______________




6)  

 If A and B are two sets and U is the universal set such that n(U) = 1200, n(A) = 300, n(B) = 600 and n(A∩B) = 150,

find n(A‘∩B‘).

  

 


Answer:_______________




7)  

 If A and B are two sets and U is the universal set such that n(U) = 1210, n(A) = 320, n(B) = 550 and n(A∩B) = 190,

find n(A‘∩B‘).

  

 


Answer:_______________




8)  

 If A and B are two sets and U is the universal set such that n(U) = 1548, n(A) = 399, n(B) = 543 and n(A∩B) = 190,

find n(A‘∩B‘).



Answer:_______________




9)  

 If A and B are two sets and U is the universal set such that n(U) = 1300, n(A) = 350, n(B) = 650 and n(A∩B) = 150,

find n(A‘∩B‘).

  

 


Answer:_______________




10)  

 If A and B are two sets and U is the universal set such that n(U) = 1710, n(A) = 380, n(B) = 540 and n(A∩B) = 120,

find n(A‘∩B‘).

  

 


Answer:_______________




 

1)  

 If A and B are two sets and U is the universal set such that n(U) = 1020, n(A) = 390, n(B) = 680 and n(A∩B) = 110,

find n(A‘∩B‘).

Answer: 60

  

 


SOLUTION 1 :

 Given :

n(U) = 1020

n(A) = 390

n(B) = 680

   n(A∩B) = 110,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 390 + 680 - 110

         = 1070 - 110 = 960

∴ n(A∪B) = 960

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1020 - 960 = 60

   n(A‘∩B‘)  = 60



2)  

 If A and B are two sets and U is the universal set such that n(U) = 1039, n(A) = 320, n(B) = 579 and n(A∩B) = 191,

find n(A‘∩B‘).

Answer: 331


SOLUTION 1 :

 Given :

n(U) = 1039

n(A) = 320

n(B) = 579

   n(A∩B) = 191,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 320 + 579 - 191

         = 899 - 191 = 708

∴ n(A∪B) = 708

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1039 - 708 = 331

   n(A‘∩B‘)  = 331



3)  

 If A and B are two sets and U is the universal set such that n(U) = 1800, n(A) = 350, n(B) = 600 and n(A∩B) = 150,

find n(A‘∩B‘).

Answer: 1000

  

 


SOLUTION 1 :

 Given :

n(U) = 1800

n(A) = 350

n(B) = 600

   n(A∩B) = 150,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 350 + 600 - 150

         = 950 - 150 = 800

∴ n(A∪B) = 800

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1800 - 800 = 1000

   n(A‘∩B‘)  = 1000



4)  

 If A and B are two sets and U is the universal set such that n(U) = 1370, n(A) = 370, n(B) = 660 and n(A∩B) = 170,

find n(A‘∩B‘).

Answer: 510

  

 


SOLUTION 1 :

 Given :

n(U) = 1370

n(A) = 370

n(B) = 660

   n(A∩B) = 170,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 370 + 660 - 170

         = 1030 - 170 = 860

∴ n(A∪B) = 860

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1370 - 860 = 510

   n(A‘∩B‘)  = 510



5)  

 If A and B are two sets and U is the universal set such that n(U) = 1760, n(A) = 304, n(B) = 539 and n(A∩B) = 139,

find n(A‘∩B‘).

Answer: 1056


SOLUTION 1 :

 Given :

n(U) = 1760

n(A) = 304

n(B) = 539

   n(A∩B) = 139,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 304 + 539 - 139

         = 843 - 139 = 704

∴ n(A∪B) = 704

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1760 - 704 = 1056

   n(A‘∩B‘)  = 1056



6)  

 If A and B are two sets and U is the universal set such that n(U) = 1200, n(A) = 300, n(B) = 600 and n(A∩B) = 150,

find n(A‘∩B‘).

Answer: 450

  

 


SOLUTION 1 :

 Given :

n(U) = 1200

n(A) = 300

n(B) = 600

   n(A∩B) = 150,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 300 + 600 - 150

         = 900 - 150 = 750

∴ n(A∪B) = 750

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1200 - 750 = 450

   n(A‘∩B‘)  = 450



7)  

 If A and B are two sets and U is the universal set such that n(U) = 1210, n(A) = 320, n(B) = 550 and n(A∩B) = 190,

find n(A‘∩B‘).

Answer: 530

  

 


SOLUTION 1 :

 Given :

n(U) = 1210

n(A) = 320

n(B) = 550

   n(A∩B) = 190,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 320 + 550 - 190

         = 870 - 190 = 680

∴ n(A∪B) = 680

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1210 - 680 = 530

   n(A‘∩B‘)  = 530



8)  

 If A and B are two sets and U is the universal set such that n(U) = 1548, n(A) = 399, n(B) = 543 and n(A∩B) = 190,

find n(A‘∩B‘).

Answer: 796


SOLUTION 1 :

 Given :

n(U) = 1548

n(A) = 399

n(B) = 543

   n(A∩B) = 190,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 399 + 543 - 190

         = 942 - 190 = 752

∴ n(A∪B) = 752

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1548 - 752 = 796

   n(A‘∩B‘)  = 796



9)  

 If A and B are two sets and U is the universal set such that n(U) = 1300, n(A) = 350, n(B) = 650 and n(A∩B) = 150,

find n(A‘∩B‘).

Answer: 450

  

 


SOLUTION 1 :

 Given :

n(U) = 1300

n(A) = 350

n(B) = 650

   n(A∩B) = 150,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 350 + 650 - 150

         = 1000 - 150 = 850

∴ n(A∪B) = 850

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1300 - 850 = 450

   n(A‘∩B‘)  = 450



10)  

 If A and B are two sets and U is the universal set such that n(U) = 1710, n(A) = 380, n(B) = 540 and n(A∩B) = 120,

find n(A‘∩B‘).

Answer: 910

  

 


SOLUTION 1 :

 Given :

n(U) = 1710

n(A) = 380

n(B) = 540

   n(A∩B) = 120,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 380 + 540 - 120

         = 920 - 120 = 800

∴ n(A∪B) = 800

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1710 - 800 = 910

   n(A‘∩B‘)  = 910