Scroll:set and function >> Exercice 1.3 >> saq (4258)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 If A and B are two sets and U is the universal set such that n(U) = 1560, n(A) = 390, n(B) = 560 and n(A∩B) = 110,

find n(A‘∩B‘).

  

 


Answer:_______________




2)  

 If A and B are two sets and U is the universal set such that n(U) = 1600, n(A) = 300, n(B) = 500 and n(A∩B) = 100,

find n(A‘∩B‘).

  

 


Answer:_______________




3)  

 If A and B are two sets and U is the universal set such that n(U) = 1878, n(A) = 321, n(B) = 531 and n(A∩B) = 115,

find n(A‘∩B‘).



Answer:_______________




4)  

 If A and B are two sets and U is the universal set such that n(U) = 1490, n(A) = 370, n(B) = 620 and n(A∩B) = 130,

find n(A‘∩B‘).

  

 


Answer:_______________




5)  

 If A and B are two sets and U is the universal set such that n(U) = 1800, n(A) = 350, n(B) = 600 and n(A∩B) = 150,

find n(A‘∩B‘).

  

 


Answer:_______________




6)  

 If A and B are two sets and U is the universal set such that n(U) = 1312, n(A) = 329, n(B) = 553 and n(A∩B) = 131,

find n(A‘∩B‘).



Answer:_______________




7)  

 If A and B are two sets and U is the universal set such that n(U) = 1830, n(A) = 370, n(B) = 660 and n(A∩B) = 140,

find n(A‘∩B‘).

  

 


Answer:_______________




8)  

 If A and B are two sets and U is the universal set such that n(U) = 1500, n(A) = 300, n(B) = 550 and n(A∩B) = 100,

find n(A‘∩B‘).

  

 


Answer:_______________




9)  

 If A and B are two sets and U is the universal set such that n(U) = 1630, n(A) = 320, n(B) = 586 and n(A∩B) = 112,

find n(A‘∩B‘).



Answer:_______________




10)  

 If A and B are two sets and U is the universal set such that n(U) = 1840, n(A) = 360, n(B) = 530 and n(A∩B) = 120,

find n(A‘∩B‘).

  

 


Answer:_______________




 

1)  

 If A and B are two sets and U is the universal set such that n(U) = 1560, n(A) = 390, n(B) = 560 and n(A∩B) = 110,

find n(A‘∩B‘).

Answer: 720

  

 


SOLUTION 1 :

 Given :

n(U) = 1560

n(A) = 390

n(B) = 560

   n(A∩B) = 110,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 390 + 560 - 110

         = 950 - 110 = 840

∴ n(A∪B) = 840

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1560 - 840 = 720

   n(A‘∩B‘)  = 720



2)  

 If A and B are two sets and U is the universal set such that n(U) = 1600, n(A) = 300, n(B) = 500 and n(A∩B) = 100,

find n(A‘∩B‘).

Answer: 900

  

 


SOLUTION 1 :

 Given :

n(U) = 1600

n(A) = 300

n(B) = 500

   n(A∩B) = 100,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 300 + 500 - 100

         = 800 - 100 = 700

∴ n(A∪B) = 700

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1600 - 700 = 900

   n(A‘∩B‘)  = 900



3)  

 If A and B are two sets and U is the universal set such that n(U) = 1878, n(A) = 321, n(B) = 531 and n(A∩B) = 115,

find n(A‘∩B‘).

Answer: 1141


SOLUTION 1 :

 Given :

n(U) = 1878

n(A) = 321

n(B) = 531

   n(A∩B) = 115,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 321 + 531 - 115

         = 852 - 115 = 737

∴ n(A∪B) = 737

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1878 - 737 = 1141

   n(A‘∩B‘)  = 1141



4)  

 If A and B are two sets and U is the universal set such that n(U) = 1490, n(A) = 370, n(B) = 620 and n(A∩B) = 130,

find n(A‘∩B‘).

Answer: 630

  

 


SOLUTION 1 :

 Given :

n(U) = 1490

n(A) = 370

n(B) = 620

   n(A∩B) = 130,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 370 + 620 - 130

         = 990 - 130 = 860

∴ n(A∪B) = 860

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1490 - 860 = 630

   n(A‘∩B‘)  = 630



5)  

 If A and B are two sets and U is the universal set such that n(U) = 1800, n(A) = 350, n(B) = 600 and n(A∩B) = 150,

find n(A‘∩B‘).

Answer: 1000

  

 


SOLUTION 1 :

 Given :

n(U) = 1800

n(A) = 350

n(B) = 600

   n(A∩B) = 150,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 350 + 600 - 150

         = 950 - 150 = 800

∴ n(A∪B) = 800

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1800 - 800 = 1000

   n(A‘∩B‘)  = 1000



6)  

 If A and B are two sets and U is the universal set such that n(U) = 1312, n(A) = 329, n(B) = 553 and n(A∩B) = 131,

find n(A‘∩B‘).

Answer: 561


SOLUTION 1 :

 Given :

n(U) = 1312

n(A) = 329

n(B) = 553

   n(A∩B) = 131,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 329 + 553 - 131

         = 882 - 131 = 751

∴ n(A∪B) = 751

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1312 - 751 = 561

   n(A‘∩B‘)  = 561



7)  

 If A and B are two sets and U is the universal set such that n(U) = 1830, n(A) = 370, n(B) = 660 and n(A∩B) = 140,

find n(A‘∩B‘).

Answer: 940

  

 


SOLUTION 1 :

 Given :

n(U) = 1830

n(A) = 370

n(B) = 660

   n(A∩B) = 140,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 370 + 660 - 140

         = 1030 - 140 = 890

∴ n(A∪B) = 890

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1830 - 890 = 940

   n(A‘∩B‘)  = 940



8)  

 If A and B are two sets and U is the universal set such that n(U) = 1500, n(A) = 300, n(B) = 550 and n(A∩B) = 100,

find n(A‘∩B‘).

Answer: 750

  

 


SOLUTION 1 :

 Given :

n(U) = 1500

n(A) = 300

n(B) = 550

   n(A∩B) = 100,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 300 + 550 - 100

         = 850 - 100 = 750

∴ n(A∪B) = 750

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1500 - 750 = 750

   n(A‘∩B‘)  = 750



9)  

 If A and B are two sets and U is the universal set such that n(U) = 1630, n(A) = 320, n(B) = 586 and n(A∩B) = 112,

find n(A‘∩B‘).

Answer: 836


SOLUTION 1 :

 Given :

n(U) = 1630

n(A) = 320

n(B) = 586

   n(A∩B) = 112,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 320 + 586 - 112

         = 906 - 112 = 794

∴ n(A∪B) = 794

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1630 - 794 = 836

   n(A‘∩B‘)  = 836



10)  

 If A and B are two sets and U is the universal set such that n(U) = 1840, n(A) = 360, n(B) = 530 and n(A∩B) = 120,

find n(A‘∩B‘).

Answer: 1070

  

 


SOLUTION 1 :

 Given :

n(U) = 1840

n(A) = 360

n(B) = 530

   n(A∩B) = 120,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 360 + 530 - 120

         = 890 - 120 = 770

∴ n(A∪B) = 770

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1840 - 770 = 1070

   n(A‘∩B‘)  = 1070