Scroll:Probability >> probability >> saq (4236)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

A bag contains  13 white,7 black, 4 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.


Answer:_______________




2)  

A bag contains  10 white,8 black, 5 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.


Answer:_______________




3)  

A bag contains  13 white,9 black, 6 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.


Answer:_______________




4)  

A bag contains  15 white,8 black, 4 green and 3 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.


Answer:_______________




5)  

A bag contains  14 white,9 black, 5 green and 3 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.


Answer:_______________




6)  

A bag contains  15 white,9 black, 6 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.


Answer:_______________




7)  

A bag contains  12 white,7 black, 6 green and 3 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.


Answer:_______________




8)  

A bag contains  14 white,7 black, 6 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.


Answer:_______________




9)  

A bag contains  10 white,9 black, 5 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.


Answer:_______________




10)  

A bag contains  11 white,9 black, 5 green and 3 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.


Answer:_______________




 

1)  

A bag contains  13 white,7 black, 4 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.

Answer: 1213


SOLUTION 1 :

Let S be the sample space.

       n(S) = 26

Let  W, B and G be the events  of selecting a white, black and green ball respectively .

Probability of getting a white ball, P(W) 


P(W)
 

=
 
  n(W)
=
 
13
n(S) 26

 

Probability of getting a black ball,P(B) 


P(B)
 

=
 
n(B)
=
 
7
n(S) 26
 

 

Probability of getting a green ball,P(G) 


P(G)
 

=
 
n(G)
=
 
4
n(S) 26

Probability of getting a white or black or green ball,

P(W ∪ B ∪ G) = P(W) + P(B) + P(G)                                                  W,B,G are mutually exclusive.

                         


=
 
13
+
 
7
+
 
4
=
 
24
26 26 26 26

ans = 1213



2)  

A bag contains  10 white,8 black, 5 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.

Answer: 2325


SOLUTION 1 :

Let S be the sample space.

       n(S) = 25

Let  W, B and G be the events  of selecting a white, black and green ball respectively .

Probability of getting a white ball, P(W) 


P(W)
 

=
 
  n(W)
=
 
10
n(S) 25

 

Probability of getting a black ball,P(B) 


P(B)
 

=
 
n(B)
=
 
8
n(S) 25
 

 

Probability of getting a green ball,P(G) 


P(G)
 

=
 
n(G)
=
 
5
n(S) 25

Probability of getting a white or black or green ball,

P(W ∪ B ∪ G) = P(W) + P(B) + P(G)                                                  W,B,G are mutually exclusive.

                         


=
 
10
+
 
8
+
 
5
=
 
23
25 25 25 25

ans = 2325



3)  

A bag contains  13 white,9 black, 6 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.

Answer: 1415


SOLUTION 1 :

Let S be the sample space.

       n(S) = 30

Let  W, B and G be the events  of selecting a white, black and green ball respectively .

Probability of getting a white ball, P(W) 


P(W)
 

=
 
  n(W)
=
 
13
n(S) 30

 

Probability of getting a black ball,P(B) 


P(B)
 

=
 
n(B)
=
 
9
n(S) 30
 

 

Probability of getting a green ball,P(G) 


P(G)
 

=
 
n(G)
=
 
6
n(S) 30

Probability of getting a white or black or green ball,

P(W ∪ B ∪ G) = P(W) + P(B) + P(G)                                                  W,B,G are mutually exclusive.

                         


=
 
13
+
 
9
+
 
6
=
 
28
30 30 30 30

ans = 1415



4)  

A bag contains  15 white,8 black, 4 green and 3 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.

Answer: 910


SOLUTION 1 :

Let S be the sample space.

       n(S) = 30

Let  W, B and G be the events  of selecting a white, black and green ball respectively .

Probability of getting a white ball, P(W) 


P(W)
 

=
 
  n(W)
=
 
15
n(S) 30

 

Probability of getting a black ball,P(B) 


P(B)
 

=
 
n(B)
=
 
8
n(S) 30
 

 

Probability of getting a green ball,P(G) 


P(G)
 

=
 
n(G)
=
 
4
n(S) 30

Probability of getting a white or black or green ball,

P(W ∪ B ∪ G) = P(W) + P(B) + P(G)                                                  W,B,G are mutually exclusive.

                         


=
 
15
+
 
8
+
 
4
=
 
27
30 30 30 30

ans = 910



5)  

A bag contains  14 white,9 black, 5 green and 3 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.

Answer: 2831


SOLUTION 1 :

Let S be the sample space.

       n(S) = 31

Let  W, B and G be the events  of selecting a white, black and green ball respectively .

Probability of getting a white ball, P(W) 


P(W)
 

=
 
  n(W)
=
 
14
n(S) 31

 

Probability of getting a black ball,P(B) 


P(B)
 

=
 
n(B)
=
 
9
n(S) 31
 

 

Probability of getting a green ball,P(G) 


P(G)
 

=
 
n(G)
=
 
5
n(S) 31

Probability of getting a white or black or green ball,

P(W ∪ B ∪ G) = P(W) + P(B) + P(G)                                                  W,B,G are mutually exclusive.

                         


=
 
14
+
 
9
+
 
5
=
 
28
31 31 31 31

ans = 2831



6)  

A bag contains  15 white,9 black, 6 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.

Answer: 1516


SOLUTION 1 :

Let S be the sample space.

       n(S) = 32

Let  W, B and G be the events  of selecting a white, black and green ball respectively .

Probability of getting a white ball, P(W) 


P(W)
 

=
 
  n(W)
=
 
15
n(S) 32

 

Probability of getting a black ball,P(B) 


P(B)
 

=
 
n(B)
=
 
9
n(S) 32
 

 

Probability of getting a green ball,P(G) 


P(G)
 

=
 
n(G)
=
 
6
n(S) 32

Probability of getting a white or black or green ball,

P(W ∪ B ∪ G) = P(W) + P(B) + P(G)                                                  W,B,G are mutually exclusive.

                         


=
 
15
+
 
9
+
 
6
=
 
30
32 32 32 32

ans = 1516



7)  

A bag contains  12 white,7 black, 6 green and 3 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.

Answer: 2528


SOLUTION 1 :

Let S be the sample space.

       n(S) = 28

Let  W, B and G be the events  of selecting a white, black and green ball respectively .

Probability of getting a white ball, P(W) 


P(W)
 

=
 
  n(W)
=
 
12
n(S) 28

 

Probability of getting a black ball,P(B) 


P(B)
 

=
 
n(B)
=
 
7
n(S) 28
 

 

Probability of getting a green ball,P(G) 


P(G)
 

=
 
n(G)
=
 
6
n(S) 28

Probability of getting a white or black or green ball,

P(W ∪ B ∪ G) = P(W) + P(B) + P(G)                                                  W,B,G are mutually exclusive.

                         


=
 
12
+
 
7
+
 
6
=
 
25
28 28 28 28

ans = 2528



8)  

A bag contains  14 white,7 black, 6 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.

Answer: 2729


SOLUTION 1 :

Let S be the sample space.

       n(S) = 29

Let  W, B and G be the events  of selecting a white, black and green ball respectively .

Probability of getting a white ball, P(W) 


P(W)
 

=
 
  n(W)
=
 
14
n(S) 29

 

Probability of getting a black ball,P(B) 


P(B)
 

=
 
n(B)
=
 
7
n(S) 29
 

 

Probability of getting a green ball,P(G) 


P(G)
 

=
 
n(G)
=
 
6
n(S) 29

Probability of getting a white or black or green ball,

P(W ∪ B ∪ G) = P(W) + P(B) + P(G)                                                  W,B,G are mutually exclusive.

                         


=
 
14
+
 
7
+
 
6
=
 
27
29 29 29 29

ans = 2729



9)  

A bag contains  10 white,9 black, 5 green and 2 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.

Answer: 1213


SOLUTION 1 :

Let S be the sample space.

       n(S) = 26

Let  W, B and G be the events  of selecting a white, black and green ball respectively .

Probability of getting a white ball, P(W) 


P(W)
 

=
 
  n(W)
=
 
10
n(S) 26

 

Probability of getting a black ball,P(B) 


P(B)
 

=
 
n(B)
=
 
9
n(S) 26
 

 

Probability of getting a green ball,P(G) 


P(G)
 

=
 
n(G)
=
 
5
n(S) 26

Probability of getting a white or black or green ball,

P(W ∪ B ∪ G) = P(W) + P(B) + P(G)                                                  W,B,G are mutually exclusive.

                         


=
 
10
+
 
9
+
 
5
=
 
24
26 26 26 26

ans = 1213



10)  

A bag contains  11 white,9 black, 5 green and 3 red balls. One ball is drawn at random.Find the probability that the ball drawn is white or black or green.

Answer: 2528


SOLUTION 1 :

Let S be the sample space.

       n(S) = 28

Let  W, B and G be the events  of selecting a white, black and green ball respectively .

Probability of getting a white ball, P(W) 


P(W)
 

=
 
  n(W)
=
 
11
n(S) 28

 

Probability of getting a black ball,P(B) 


P(B)
 

=
 
n(B)
=
 
9
n(S) 28
 

 

Probability of getting a green ball,P(G) 


P(G)
 

=
 
n(G)
=
 
5
n(S) 28

Probability of getting a white or black or green ball,

P(W ∪ B ∪ G) = P(W) + P(B) + P(G)                                                  W,B,G are mutually exclusive.

                         


=
 
11
+
 
9
+
 
5
=
 
25
28 28 28 28

ans = 2528