Written Instructions:
For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..
For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.
Leave your answers in the simplest form or correct to two decimal places.
1) Find the value of m if x3 - 3x2 + Nx + 80 leaves the remainder 4 when divided by (x+1). N = Answer:_______________ |
2) Find the value of m if x3 - 6x2 + Ux + 60 leaves the remainder 5 when divided by (x+1). U = Answer:_______________ |
3) Find the value of m if x3 - 3x2 + Ex + 80 leaves the remainder 4 when divided by (x+1). E = Answer:_______________ |
4) Find the value of m if x3 - 3x2 + Fx + 70 leaves the remainder 4 when divided by (x+3). F = Answer:_______________ |
5) Find the value of m if x3 - 6x2 + Bx + 60 leaves the remainder 5 when divided by (x+3). B = Answer:_______________ |
6) Find the value of m if x3 - 3x2 + Wx + 80 leaves the remainder 3 when divided by (x+1). W = Answer:_______________ |
7) Find the value of m if x3 - 5x2 + Px + 60 leaves the remainder 3 when divided by (x+2). P = Answer:_______________ |
8) Find the value of m if x3 - 6x2 + Ox + 80 leaves the remainder 4 when divided by (x+2). O = Answer:_______________ |
9) Find the value of m if x3 - 6x2 + Jx + 70 leaves the remainder 5 when divided by (x+2). J = Answer:_______________ |
10) Find the value of m if x3 - 5x2 + Ix + 70 leaves the remainder 3 when divided by (x+1). I = Answer:_______________ |
1) Find the value of m if x3 - 3x2 + Dx + 80 leaves the remainder 4 when divided by (x+1). D = Answer: 72 SOLUTION 1 : P(x) = x3 - 3x2 + mx + 80 Given, P(-1) = 4 ⇒ (-1)3 - 6(-1)2 + D(-1) + 80 = 4 ⇒ -1 - 3 -1D + 80 = 4 ⇒ -1D = 4 + 1 + 3 -80 = -72 ⇒ -1D = -72 ⇒ D = 72 |
2) Find the value of m if x3 - 6x2 + Wx + 60 leaves the remainder 5 when divided by (x+1). W = Answer: 48 SOLUTION 1 : P(x) = x3 - 6x2 + mx + 60 Given, P(-1) = 5 ⇒ (-1)3 - 6(-1)2 + W(-1) + 60 = 5 ⇒ -1 - 6 -1W + 60 = 5 ⇒ -1W = 5 + 1 + 6 -60 = -48 ⇒ -1W = -48 ⇒ W = 48 |
3) Find the value of m if x3 - 3x2 + Rx + 80 leaves the remainder 4 when divided by (x+1). R = Answer: 72 SOLUTION 1 : P(x) = x3 - 3x2 + mx + 80 Given, P(-1) = 4 ⇒ (-1)3 - 6(-1)2 + R(-1) + 80 = 4 ⇒ -1 - 3 -1R + 80 = 4 ⇒ -1R = 4 + 1 + 3 -80 = -72 ⇒ -1R = -72 ⇒ R = 72 |
4) Find the value of m if x3 - 3x2 + Px + 70 leaves the remainder 4 when divided by (x+3). P = Answer: 4 SOLUTION 1 : P(x) = x3 - 3x2 + mx + 70 Given, P(-3) = 4 ⇒ (-3)3 - 6(-3)2 + P(-3) + 70 = 4 ⇒ -27 - 27 -3P + 70 = 4 ⇒ -3P = 4 + 27 + 27 -70 = -12 ⇒ -3P = -12 ⇒ P = 4 |
5) Find the value of m if x3 - 6x2 + Dx + 60 leaves the remainder 5 when divided by (x+3). D = Answer: -8.66666666667 SOLUTION 1 : P(x) = x3 - 6x2 + mx + 60 Given, P(-3) = 5 ⇒ (-3)3 - 6(-3)2 + D(-3) + 60 = 5 ⇒ -27 - 54 -3D + 60 = 5 ⇒ -3D = 5 + 27 + 54 -60 = 26 ⇒ -3D = 26 ⇒ D = -8.66666666667 |
6) Find the value of m if x3 - 3x2 + Ux + 80 leaves the remainder 3 when divided by (x+1). U = Answer: 73 SOLUTION 1 : P(x) = x3 - 3x2 + mx + 80 Given, P(-1) = 3 ⇒ (-1)3 - 6(-1)2 + U(-1) + 80 = 3 ⇒ -1 - 3 -1U + 80 = 3 ⇒ -1U = 3 + 1 + 3 -80 = -73 ⇒ -1U = -73 ⇒ U = 73 |
7) Find the value of m if x3 - 5x2 + Hx + 60 leaves the remainder 3 when divided by (x+2). H = Answer: 14.5 SOLUTION 1 : P(x) = x3 - 5x2 + mx + 60 Given, P(-2) = 3 ⇒ (-2)3 - 6(-2)2 + H(-2) + 60 = 3 ⇒ -8 - 20 -2H + 60 = 3 ⇒ -2H = 3 + 8 + 20 -60 = -29 ⇒ -2H = -29 ⇒ H = 14.5 |
8) Find the value of m if x3 - 6x2 + Fx + 80 leaves the remainder 4 when divided by (x+2). F = Answer: 22 SOLUTION 1 : P(x) = x3 - 6x2 + mx + 80 Given, P(-2) = 4 ⇒ (-2)3 - 6(-2)2 + F(-2) + 80 = 4 ⇒ -8 - 24 -2F + 80 = 4 ⇒ -2F = 4 + 8 + 24 -80 = -44 ⇒ -2F = -44 ⇒ F = 22 |
9) Find the value of m if x3 - 6x2 + Xx + 70 leaves the remainder 5 when divided by (x+2). X = Answer: 16.5 SOLUTION 1 : P(x) = x3 - 6x2 + mx + 70 Given, P(-2) = 5 ⇒ (-2)3 - 6(-2)2 + X(-2) + 70 = 5 ⇒ -8 - 24 -2X + 70 = 5 ⇒ -2X = 5 + 8 + 24 -70 = -33 ⇒ -2X = -33 ⇒ X = 16.5 |
10) Find the value of m if x3 - 5x2 + Rx + 70 leaves the remainder 3 when divided by (x+1). R = Answer: 61 SOLUTION 1 : P(x) = x3 - 5x2 + mx + 70 Given, P(-1) = 3 ⇒ (-1)3 - 6(-1)2 + R(-1) + 70 = 3 ⇒ -1 - 5 -1R + 70 = 3 ⇒ -1R = 3 + 1 + 5 -70 = -61 ⇒ -1R = -61 ⇒ R = 61 |