Scroll:Theory of sets >> Symmetric Difference of sets >> saq (4167)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 Let A and B be two finite sets such that n(A-B) = 10, n(AUB) = 170, Find n(B).

n(B)  =  



Answer:_______________




2)  

 Let A and B be two finite sets such that n(A-B) = 20, n(AUB) = 160, Find n(B).

n(B)  =  



Answer:_______________




3)  

 Let A and B be two finite sets such that n(A-B) = 40, n(AUB) = 110, Find n(B).

n(B)  =  



Answer:_______________




4)  

 Let A and B be two finite sets such that n(A-B) = 30, n(AUB) = 170, Find n(B).

n(B)  =  



Answer:_______________




5)  

 Let A and B be two finite sets such that n(A-B) = 40, n(AUB) = 150, Find n(B).

n(B)  =  



Answer:_______________




6)  

 Let A and B be two finite sets such that n(A-B) = 30, n(AUB) = 110, Find n(B).

n(B)  =  



Answer:_______________




7)  

 Let A and B be two finite sets such that n(A-B) = 10, n(AUB) = 140, Find n(B).

n(B)  =  



Answer:_______________




8)  

 Let A and B be two finite sets such that n(A-B) = 10, n(AUB) = 120, Find n(B).

n(B)  =  



Answer:_______________




9)  

 Let A and B be two finite sets such that n(A-B) = 10, n(AUB) = 160, Find n(B).

n(B)  =  



Answer:_______________




10)  

 Let A and B be two finite sets such that n(A-B) = 40, n(AUB) = 170, Find n(B).

n(B)  =  



Answer:_______________




 

1)  

 Let A and B be two finite sets such that n(A-B) = 10, n(AUB) = 170, Find n(B).

n(B)  =   Answer: 160


SOLUTION 1 :

 n(AUB)  = n(A - B) + n(A∩B) + n(B - A)

n(aUB)  =  n(A - B) + n(B)  ⇒ [ n(A∩B) + n(B - A) = n(B) ]   

170  =  10 + n(B)

 n(B)  = 170 - 10

n(B)   =  160



2)  

 Let A and B be two finite sets such that n(A-B) = 20, n(AUB) = 160, Find n(B).

n(B)  =   Answer: 140


SOLUTION 1 :

 n(AUB)  = n(A - B) + n(A∩B) + n(B - A)

n(aUB)  =  n(A - B) + n(B)  ⇒ [ n(A∩B) + n(B - A) = n(B) ]   

160  =  20 + n(B)

 n(B)  = 160 - 20

n(B)   =  140



3)  

 Let A and B be two finite sets such that n(A-B) = 40, n(AUB) = 110, Find n(B).

n(B)  =   Answer: 70


SOLUTION 1 :

 n(AUB)  = n(A - B) + n(A∩B) + n(B - A)

n(aUB)  =  n(A - B) + n(B)  ⇒ [ n(A∩B) + n(B - A) = n(B) ]   

110  =  40 + n(B)

 n(B)  = 110 - 40

n(B)   =  70



4)  

 Let A and B be two finite sets such that n(A-B) = 30, n(AUB) = 170, Find n(B).

n(B)  =   Answer: 140


SOLUTION 1 :

 n(AUB)  = n(A - B) + n(A∩B) + n(B - A)

n(aUB)  =  n(A - B) + n(B)  ⇒ [ n(A∩B) + n(B - A) = n(B) ]   

170  =  30 + n(B)

 n(B)  = 170 - 30

n(B)   =  140



5)  

 Let A and B be two finite sets such that n(A-B) = 40, n(AUB) = 150, Find n(B).

n(B)  =   Answer: 110


SOLUTION 1 :

 n(AUB)  = n(A - B) + n(A∩B) + n(B - A)

n(aUB)  =  n(A - B) + n(B)  ⇒ [ n(A∩B) + n(B - A) = n(B) ]   

150  =  40 + n(B)

 n(B)  = 150 - 40

n(B)   =  110



6)  

 Let A and B be two finite sets such that n(A-B) = 30, n(AUB) = 110, Find n(B).

n(B)  =   Answer: 80


SOLUTION 1 :

 n(AUB)  = n(A - B) + n(A∩B) + n(B - A)

n(aUB)  =  n(A - B) + n(B)  ⇒ [ n(A∩B) + n(B - A) = n(B) ]   

110  =  30 + n(B)

 n(B)  = 110 - 30

n(B)   =  80



7)  

 Let A and B be two finite sets such that n(A-B) = 10, n(AUB) = 140, Find n(B).

n(B)  =   Answer: 130


SOLUTION 1 :

 n(AUB)  = n(A - B) + n(A∩B) + n(B - A)

n(aUB)  =  n(A - B) + n(B)  ⇒ [ n(A∩B) + n(B - A) = n(B) ]   

140  =  10 + n(B)

 n(B)  = 140 - 10

n(B)   =  130



8)  

 Let A and B be two finite sets such that n(A-B) = 10, n(AUB) = 120, Find n(B).

n(B)  =   Answer: 110


SOLUTION 1 :

 n(AUB)  = n(A - B) + n(A∩B) + n(B - A)

n(aUB)  =  n(A - B) + n(B)  ⇒ [ n(A∩B) + n(B - A) = n(B) ]   

120  =  10 + n(B)

 n(B)  = 120 - 10

n(B)   =  110



9)  

 Let A and B be two finite sets such that n(A-B) = 10, n(AUB) = 160, Find n(B).

n(B)  =   Answer: 150


SOLUTION 1 :

 n(AUB)  = n(A - B) + n(A∩B) + n(B - A)

n(aUB)  =  n(A - B) + n(B)  ⇒ [ n(A∩B) + n(B - A) = n(B) ]   

160  =  10 + n(B)

 n(B)  = 160 - 10

n(B)   =  150



10)  

 Let A and B be two finite sets such that n(A-B) = 40, n(AUB) = 170, Find n(B).

n(B)  =   Answer: 130


SOLUTION 1 :

 n(AUB)  = n(A - B) + n(A∩B) + n(B - A)

n(aUB)  =  n(A - B) + n(B)  ⇒ [ n(A∩B) + n(B - A) = n(B) ]   

170  =  40 + n(B)

 n(B)  = 170 - 40

n(B)   =  130