Written Instructions:
For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..
For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.
Leave your answers in the simplest form or correct to two decimal places.
1) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer:_______________ |
2) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer:_______________ |
3) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer:_______________ |
4) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer:_______________ |
5) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer:_______________ |
6) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer:_______________ |
7) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer:_______________ |
8) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer:_______________ |
9) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer:_______________ |
10) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer:_______________ |
1) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer: 2 SOLUTION 1 : (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0 comparing with Ax2 + Bx + C = 0 we get A = a2 + b2, B = -2(ac + bd) , C = c2 + d2 given that the equation has equal roots. in this â–º=0 B2 - AC=0 [-2(ac + bd)]2 - 4[(a2 + b2) (c2 + d2)] = 0 4(a2c2 + 2abcd + b2d2) - 4(a2c2 + a2d2 +cb2c2 +cb2d2) = 0 a2c2 + 2abcd + b2d2 - a2c2 - a2d2 -b2c2 - b2d2= 0 2abcd - a2d2 - b2c2 = 0 (ad - bc)2 = 0 ad - bc = 0 ad = bc = Hence proved.
|
2) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer: 1 SOLUTION 1 : (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0 comparing with Ax2 + Bx + C = 0 we get A = a2 + b2, B = -2(ac + bd) , C = c2 + d2 given that the equation has equal roots. in this â–º=0 B2 - AC=0 [-2(ac + bd)]2 - 4[(a2 + b2) (c2 + d2)] = 0 4(a2c2 + 2abcd + b2d2) - 4(a2c2 + a2d2 +cb2c2 +cb2d2) = 0 a2c2 + 2abcd + b2d2 - a2c2 - a2d2 -b2c2 - b2d2= 0 2abcd - a2d2 - b2c2 = 0 (ad - bc)2 = 0 ad - bc = 0 ad = bc = Hence proved.
|
3) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer: 2 SOLUTION 1 : (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0 comparing with Ax2 + Bx + C = 0 we get A = a2 + b2, B = -2(ac + bd) , C = c2 + d2 given that the equation has equal roots. in this â–º=0 B2 - AC=0 [-2(ac + bd)]2 - 4[(a2 + b2) (c2 + d2)] = 0 4(a2c2 + 2abcd + b2d2) - 4(a2c2 + a2d2 +cb2c2 +cb2d2) = 0 a2c2 + 2abcd + b2d2 - a2c2 - a2d2 -b2c2 - b2d2= 0 2abcd - a2d2 - b2c2 = 0 (ad - bc)2 = 0 ad - bc = 0 ad = bc = Hence proved.
|
4) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer: 2 SOLUTION 1 : (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0 comparing with Ax2 + Bx + C = 0 we get A = a2 + b2, B = -2(ac + bd) , C = c2 + d2 given that the equation has equal roots. in this â–º=0 B2 - AC=0 [-2(ac + bd)]2 - 4[(a2 + b2) (c2 + d2)] = 0 4(a2c2 + 2abcd + b2d2) - 4(a2c2 + a2d2 +cb2c2 +cb2d2) = 0 a2c2 + 2abcd + b2d2 - a2c2 - a2d2 -b2c2 - b2d2= 0 2abcd - a2d2 - b2c2 = 0 (ad - bc)2 = 0 ad - bc = 0 ad = bc = Hence proved.
|
5) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer: 2 SOLUTION 1 : (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0 comparing with Ax2 + Bx + C = 0 we get A = a2 + b2, B = -2(ac + bd) , C = c2 + d2 given that the equation has equal roots. in this â–º=0 B2 - AC=0 [-2(ac + bd)]2 - 4[(a2 + b2) (c2 + d2)] = 0 4(a2c2 + 2abcd + b2d2) - 4(a2c2 + a2d2 +cb2c2 +cb2d2) = 0 a2c2 + 2abcd + b2d2 - a2c2 - a2d2 -b2c2 - b2d2= 0 2abcd - a2d2 - b2c2 = 0 (ad - bc)2 = 0 ad - bc = 0 ad = bc = Hence proved.
|
6) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer: 2 SOLUTION 1 : (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0 comparing with Ax2 + Bx + C = 0 we get A = a2 + b2, B = -2(ac + bd) , C = c2 + d2 given that the equation has equal roots. in this â–º=0 B2 - AC=0 [-2(ac + bd)]2 - 4[(a2 + b2) (c2 + d2)] = 0 4(a2c2 + 2abcd + b2d2) - 4(a2c2 + a2d2 +cb2c2 +cb2d2) = 0 a2c2 + 2abcd + b2d2 - a2c2 - a2d2 -b2c2 - b2d2= 0 2abcd - a2d2 - b2c2 = 0 (ad - bc)2 = 0 ad - bc = 0 ad = bc = Hence proved.
|
7) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer: 2 SOLUTION 1 : (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0 comparing with Ax2 + Bx + C = 0 we get A = a2 + b2, B = -2(ac + bd) , C = c2 + d2 given that the equation has equal roots. in this â–º=0 B2 - AC=0 [-2(ac + bd)]2 - 4[(a2 + b2) (c2 + d2)] = 0 4(a2c2 + 2abcd + b2d2) - 4(a2c2 + a2d2 +cb2c2 +cb2d2) = 0 a2c2 + 2abcd + b2d2 - a2c2 - a2d2 -b2c2 - b2d2= 0 2abcd - a2d2 - b2c2 = 0 (ad - bc)2 = 0 ad - bc = 0 ad = bc = Hence proved.
|
8) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer: 1 SOLUTION 1 : (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0 comparing with Ax2 + Bx + C = 0 we get A = a2 + b2, B = -2(ac + bd) , C = c2 + d2 given that the equation has equal roots. in this â–º=0 B2 - AC=0 [-2(ac + bd)]2 - 4[(a2 + b2) (c2 + d2)] = 0 4(a2c2 + 2abcd + b2d2) - 4(a2c2 + a2d2 +cb2c2 +cb2d2) = 0 a2c2 + 2abcd + b2d2 - a2c2 - a2d2 -b2c2 - b2d2= 0 2abcd - a2d2 - b2c2 = 0 (ad - bc)2 = 0 ad - bc = 0 ad = bc = Hence proved.
|
9) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer: 1 SOLUTION 1 : (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0 comparing with Ax2 + Bx + C = 0 we get A = a2 + b2, B = -2(ac + bd) , C = c2 + d2 given that the equation has equal roots. in this â–º=0 B2 - AC=0 [-2(ac + bd)]2 - 4[(a2 + b2) (c2 + d2)] = 0 4(a2c2 + 2abcd + b2d2) - 4(a2c2 + a2d2 +cb2c2 +cb2d2) = 0 a2c2 + 2abcd + b2d2 - a2c2 - a2d2 -b2c2 - b2d2= 0 2abcd - a2d2 - b2c2 = 0 (ad - bc)2 = 0 ad - bc = 0 ad = bc = Hence proved.
|
10) If the root of the equation (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0, where ad - bc ≠ 0, are equal, prove that ≠ Answer: 1 SOLUTION 1 : (a2 + b2)x2 - 2(ac + bd)x + c2 + d2 = 0 comparing with Ax2 + Bx + C = 0 we get A = a2 + b2, B = -2(ac + bd) , C = c2 + d2 given that the equation has equal roots. in this â–º=0 B2 - AC=0 [-2(ac + bd)]2 - 4[(a2 + b2) (c2 + d2)] = 0 4(a2c2 + 2abcd + b2d2) - 4(a2c2 + a2d2 +cb2c2 +cb2d2) = 0 a2c2 + 2abcd + b2d2 - a2c2 - a2d2 -b2c2 - b2d2= 0 2abcd - a2d2 - b2c2 = 0 (ad - bc)2 = 0 ad - bc = 0 ad = bc = Hence proved.
|