Scroll:Trigonometry >> Prove the identity >> ps (4126)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

Prove the following, 

Ø

Ø


Answer:_______________




2)  

 determine whether each of the following is an identity or not.




Answer:_______________




3)  

 Determine whether each of the following is an identity or not.





Answer:_______________




4)  

 



 


Answer:_______________




5)  

 Prove that, 

Ø

Ø

2Ø


Answer:_______________




6)  

 Prove the identity,



Answer:_______________




7)  

prove that,  




Answer:_______________




8)  

 If  x= a secØ + b tanØ and

     y= a tanØ + b secØ, then prove that x2 - y2 = a2 - b2




Answer:_______________




9)  

 Prove that  

Ø    

 Ø


Answer:_______________




10)  

Prove the following, 

Ø

Ø


Answer:_______________




 

1)  

Prove the following, 

Answer: tanØ

Answer: cotØ



2)  

 determine whether each of the following is an identity or not.



Answer: 1



3)  

 Determine whether each of the following is an identity or not.



Answer: 2




4)  

 



Answer: 2

 



5)  

 Prove that, 

Answer: 1-2secØ

Answer: tan Ø

Answer: 2tan2Ø



6)  

 Prove the identity,

Answer: 1



7)  

prove that,  



Answer: 1



8)  

 If  x= a secØ + b tanØ and

     y= a tanØ + b secØ, then prove that x2 - y2 = a2 - b2



Answer: 1


SOLUTION 1 :

 

      TO PROVE: x2 - y2 = a2 - b2

      PROOF:

              L.H.S. = x2 - y2

       =(a sec Ø + b tan Ø ) - (a tanØ + b secØ )2

       =[(a secØ ) + 2(a secØ ) (b tanØ ) + (b tanØ )2]

            - [(a tanØ )2 + 2 (a tanØ ) (b sinØ ) + (b sec Ø)2]

       = (a2 sec2Ø+ 2 ab secØ  tanØ + b2 tanØ)

             -(a2 tan2Ø+ 2 ab tanØ  secØ  + b2  sec2Ø)

       = ( a2 sec2 Ø+ 2 ab secØ  tanØ + b2 tan2Ø)

            - (a2 tan2 Ø - 2 ab tanØ secØ + b2 sec2Ø) 

       = a2 sec2Ø- a2 tan2 Ø _ b2 tan2Ø- b2 sec2Ø

 

       = a2 (sec2Ø  - tan2Ø) - b2  (secØ- tan2Ø)

 

       =a2 (1) - b2 (1)

      =a2 - b2 = RHS 

           so R.H.S = L.H.S         Hence proved.



9)  

 Prove that  

Answer: 1+sinØ    

 Answer: cosØ



10)  

Prove the following, 

Answer: tanØ

Answer: cotØ