Scroll:Ratios and proportions >> Equivalent ratios >> saq (3863)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 Are these ratios equivalent

1
2
 and 
5
10




Answer:_______________




2)  

 Are these ratios equivalent

2:5 and 6:10




Answer:_______________




3)  

 Are these ratios equivalent

1 :3 and 4 :6




Answer:_______________




4)  

 Are these ratios equivalent

1:5 and 3:15





Answer:_______________




5)  

 Are these ratios equivalent

3
5
 and 
18
20




Answer:_______________




6)  

 Are these ratios equivalent

2 : 4 and 6 : 12



Answer:_______________




7)  

 Are these ratios equivalent

4
5
 and 
16
20




Answer:_______________




8)  

 Are these ratios equivalent

1 : 2 and 7 : 14



 

Answer:_______________




9)  

 Are these ratios equivalent

2 : 5 and 6 : 15



 

Answer:_______________




10)  

 Are these ratios equivalent

1 : 4 and 8 : 20




Answer:_______________




 

1)  

 Are these ratios equivalent

1
2
 and 
5
10




SOLUTION 1 :

Remember:

Two ratios are equivalent if their cross products are equal.

Compare the two cross products. Multiply the numerator of one fraction and the denominator of the other.
 

1 × 10 
=
 2 × 5
 
10 = 10


The cross products are equal, so the ratios are equivalent. 



2)  

 Are these ratios equivalent

2:5 and 6:10



Answer: 1


SOLUTION 1 :

Write the ratios as fractions.

2
5
 and 
6
10


Compare the two cross products. Multiply the numerator of one fraction and the denominator of the other.

2 × 10 
=
 5 × 6
 
20  30


The cross products are not equal, so the ratios are not equivalent.



3)  

 Are these ratios equivalent

1 :3 and 4 :6



Answer: 2


SOLUTION 1 :

Write the ratios as fractions.

1
3
 and 
4
6


Compare the two cross products. Multiply the numerator of one fraction and the denominator of the other.

1 × 6 
=
 3 × 4
 
 12


The cross products are not equal, so the ratios are not equivalent. 



4)  

 Are these ratios equivalent

1:5 and 3:15



Answer: 2



SOLUTION 1 :

Write the ratios as fractions.

1
5
 and 
3
15


Compare the two cross products. Multiply the numerator of one fraction and the denominator of the other.

1 × 15 
=
 5 × 3
 
15 = 15


The cross products are equal, so the ratios are equivalent.



5)  

 Are these ratios equivalent

3
5
 and 
18
20



Answer: 2


SOLUTION 1 :

Compare the two cross products. Multiply the numerator of one fraction and the denominator of the other.

3 × 20 
=
 5 × 18
 
60  90


The cross products are not equal, so the ratios are not equivalent. 



6)  

 Are these ratios equivalent

2 : 4 and 6 : 12


Answer: 1


SOLUTION 1 :

Write the ratios as fractions.

2
4
 and 
6
12


Compare the two cross products. Multiply the numerator of one fraction and the denominator of the other.

2 × 12 
=
 4 × 6
 
24 = 24


The cross products are equal, so the ratios are equivalent. 



7)  

 Are these ratios equivalent

4
5
 and 
16
20



Answer: 2


SOLUTION 1 :

Compare the two cross products. Multiply the numerator of one fraction and the denominator of the other.

4 × 20 
=
 5 × 16
 
80 = 80


The cross products are equal, so the ratios are equivalent. 



8)  

 Are these ratios equivalent

1 : 2 and 7 : 14



Answer: 1

 

SOLUTION 1 :

Write the ratios as fractions.

1
2
 and 
7
14


Compare the two cross products. Multiply the numerator of one fraction and the denominator of the other.

1 × 14 
=
 2 × 7
 
14 = 14


The cross products are equal, so the ratios are equivalent. 



9)  

 Are these ratios equivalent

2 : 5 and 6 : 15



Answer: 1

 

SOLUTION 1 :

 remember:

Two ratios are equivalent if their cross products are equal. 

Write the ratios as fractions.
 

2
5
 and 
6
15


Compare the two cross products. Multiply the numerator of one fraction and the denominator of the other.
 

2 × 15 
=
 5 × 6
 
30 = 30


The cross products are equal, so the ratios are equivalent. 



10)  

 Are these ratios equivalent

1 : 4 and 8 : 20



Answer: 2


SOLUTION 1 :

Write the ratios as fractions.

1
4
 and 
8
20


Compare the two cross products. Multiply the numerator of one fraction and the denominator of the other.

1 × 20 
=
 4 × 8
 
20  32


The cross products are not equal, so the ratios are not equivalent.