Scroll:Geometry >> Angles >> ps (3086)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

The figure ABCD is a trapezium. DAB=115°. BDC=41°. EBC=60° and AB//DC. ABE is a straight line. Find DCB and DBC.

DCB °

DBC °


Answer:_______________




2)  

The figure ABCD is a trapezium. DAB=119°. BDC=47°. EBC=51° and AB//DC. ABE is a straight line. Find DCB and DBC.

DCB °

DBC °


Answer:_______________




3)  

The figure ABCD is a trapezium. DAB=110°. BDC=40°. EBC=50° and AB//DC. ABE is straight line. Find DCB and DBC.

DCB °

DBC °


Answer:_______________




4)  

The figure ABCD is a trapezium. DAB=109°. BDC=53°. EBC=53° and AB//DC. ABE is a straight line. Find DCB and DBC.

DCB °

DBC °


Answer:_______________




5)  

The figure ABCD is a trapezium. DAB=117°. BDC=40°. EBC=52° and AB//DC. ABE is straigt line. Find DCB and DBC.

DCB °

DBC °


Answer:_______________




6)  

The figure ABCD is a trapezium. DAB=105°. BDC=61°. EBC=29° and AB//DC. ABE is a straight line. Find DCB and DBC.

DCB °

DBC °


Answer:_______________




7)  

The figure ABCD is a trapezium. DAB=124°. BDC=60°. EBC=59° and AB//DC. ABE is straight line. Find DCB and DBC.

DCB °

DBC °


Answer:_______________




8)  

The figure ABCD is a trapezium. DAB=111°. BDC=52°. EBC=47° and AB//DC. ABE is straight line. Find DCB and DBC.

DCB °

DBC °


Answer:_______________




9)  

The figure ABCD is a trapezium. DAB=103°. BDC=62°. EBC=33° and AB//DC. ABE is straight line. Find DCB and DBC.

DCB °

DBC °


Answer:_______________




10)  

The figure ABCD is a trapezium. DAB=132°. BDC=44°. EBC=52° and AB//DC. ABE is a straight line. Find DCB and DBC.

DCB °

DBC °


Answer:_______________




 

1)  

The figure ABCD is a trapezium. DAB=115°. BDC=41°. EBC=60° and AB//DC. ABE is a straight line. Find DCB and DBC.

DCB Answer: 60°

DBC Answer: 79°


SOLUTION 1 :

Step 1: ABC = 180° - 60° (sum of angles on a straight line)

                       = 120°

Step 2: DCB = 180° - 120° (AB // DC)

                         = 60°

Step 3: DBC = 180° - 41° - 60° (sum of angles of triangle)

                       = 79°



2)  

The figure ABCD is a trapezium. DAB=119°. BDC=47°. EBC=51° and AB//DC. ABE is a straight line. Find DCB and DBC.

DCB Answer: 51°

DBC Answer: 82°


SOLUTION 1 :

Step 1: ABC = 180° - 51° (sum of angles on a straight line)

                       = 129°

Step 2: DCB = 180° - 129° (AB // DC)

                         = 51°

Step 3: DBC = 180° - 47° - 51° (sum of angles of triangle)

                       = 82°



3)  

The figure ABCD is a trapezium. DAB=110°. BDC=40°. EBC=50° and AB//DC. ABE is straight line. Find DCB and DBC.

DCB Answer: 50°

DBC Answer: 90°


SOLUTION 1 :

Step 1: ABC = 180° - 50° (sum of angles on a straight line)

                       = 130°

Step 2: DCB = 180° - 130° (AB // DC)

                         = 50°

Step 3: DBC = 180° - 40° - 50° (sum of angles of triangle)

                       = 90°



4)  

The figure ABCD is a trapezium. DAB=109°. BDC=53°. EBC=53° and AB//DC. ABE is a straight line. Find DCB and DBC.

DCB Answer: 30°

DBC Answer: 97°


SOLUTION 1 :

Step 1: ABC = 180° - 30° (sum of angles on a straight line)

                       = 150°

Step 2: DCB = 180° - 150° (AB // DC)

                         = 30°

Step 3: DBC = 180° - 53° - 30° (sum of angles of triangle)

                       = 97°



5)  

The figure ABCD is a trapezium. DAB=117°. BDC=40°. EBC=52° and AB//DC. ABE is straigt line. Find DCB and DBC.

DCB Answer: 52°

DBC Answer: 88°


SOLUTION 1 :

Step 1: ABC = 180° - 52° (sum of angles on a straight line)

                       = 128°

Step 2: DCB = 180° - 128° (AB // DC)

                         = 52°

Step 3: DBC = 180° - 40° - 52° (sum of angles of triangle)

                       = 88°



6)  

The figure ABCD is a trapezium. DAB=105°. BDC=61°. EBC=29° and AB//DC. ABE is a straight line. Find DCB and DBC.

DCB Answer: 29°

DBC Answer: 90°


SOLUTION 1 :

Step 1: ABC = 180° - 29° (sum of angles on a straight line)

                       = 151°

Step 2: DCB = 180° - 151° (AB // DC)

                         = 29°

Step 3:DBC = 180° - 61° - 29° (sum of angles of triangle)

                       = 90°



7)  

The figure ABCD is a trapezium. DAB=124°. BDC=60°. EBC=59° and AB//DC. ABE is straight line. Find DCB and DBC.

DCB Answer: 59°

DBC Answer: 61°


SOLUTION 1 :

Step 1: ABC = 180° - 59° (sum of angles on a straight line)

                       = 121°

Step 2: DCB = 180° - 121° (AB // DC)

                         = 59°

Step 3: DBC = 180° - 60° - 59° (sum of angles of triangle)

                       = 61°



8)  

The figure ABCD is a trapezium. DAB=111°. BDC=52°. EBC=47° and AB//DC. ABE is straight line. Find DCB and DBC.

DCB Answer: 47°

DBC Answer: 81°


SOLUTION 1 :

Step 1: ABC = 180° - 47° (sum of angles on a straight line)

                       = 133°

Step 2: DCB = 180° - 133° (AB // DC)

                         = 47°

Step 3: DBC = 180° - 52° - 47° (sum of angles of triangle)

                       = 81°



9)  

The figure ABCD is a trapezium. DAB=103°. BDC=62°. EBC=33° and AB//DC. ABE is straight line. Find DCB and DBC.

DCB Answer: 33°

DBC Answer: 85°


SOLUTION 1 :

Step 1: ABC = 180° - 33° (sum of angles on a straight line)

                       = 147°

Step 2: DCB = 180° - 147° (AB // DC)

                         = 33°

Step 3: DBC = 180° - 62° - 33° (sum of angles of triangle)

                       = 85°



10)  

The figure ABCD is a trapezium. DAB=132°. BDC=44°. EBC=52° and AB//DC. ABE is a straight line. Find DCB and DBC.

DCB Answer: 52°

DBC Answer: 84°


SOLUTION 1 :

Step 1: ABC = 180° - 52° (sum of angles on a straight line)

                       = 128°

Step 2: DCB = 180° - 128° (AB // DC)

                         = 52°

Step 3: DBC = 180° - 44° - 52° (sum of angles of triangle)

                       = 84°