Scroll:Measurement >> Area & Circumference of Circle >> ps (1829)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 77 cm. Find the area of shaded region, A. (Take π = 227)


Answer:_______________




2)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 63 cm. Find the area of shaded region, A. (Take π = 227)


Answer:_______________




3)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 56 cm. Find the area of shaded region, A. (Take π = 227)


Answer:_______________




4)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 35 cm. Find the area of shaded region, A. (Take π = 227)


Answer:_______________




5)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 42 cm. Find the area of shaded region, A. (Take π = 227)


Answer:_______________




6)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 28 cm. Find the area of shaded region, A. (Take π = 227)


Answer:_______________




7)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 70 cm. Find the area of shaded region, A. (Take π = 227)


Answer:_______________




8)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 14 cm. Find the area of shaded region, A. (Take π = 227)


Answer:_______________




9)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 49 cm. Find the area of shaded region, A. (Take π = 227)


Answer:_______________




10)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 21 cm. Find the area of shaded region, A. (Take π = 227)


Answer:_______________




 

1)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 77 cm. Find the area of shaded region, A. (Take π = 227)

Answer: 847


SOLUTION 1 :

Step 1: Radius of quadrant = 77 ÷ 2

                                            = 38.5 cm

Step 2: Area of quadrant = 14 x π x r2 = 14 x 227 x 2

                                                          = 1164.625 cm2

Step 3: Area of square = 38.5 x 38.5
                                     = 1482.25 cm2

Step 4: Area of B = Area of square - Area of quadrant
                            = 1482.25 - 1164.625
                            = 317.625 cm2

Step 5: Shaded area A = 1482.25 - 317.625 - 317.625
                                     = 847 cm2



2)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 63 cm. Find the area of shaded region, A. (Take π = 227)

Answer: 567


SOLUTION 1 :

Step 1: Radius of quadrant = 63 ÷ 2

                                            = 31.5 cm

Step 2: Area of quadrant = 14 x π x r2 = 14 x 227 x 2

                                                          = 779.625 cm2

Step 3: Area of square = 31.5 x 31.5
                                     = 992.25 cm2

Step 4: Area of B = Area of square - Area of quadrant
                            = 992.25 - 779.625
                            = 212.625 cm2

Step 5: Shaded area A = 992.25 - 212.625 - 212.625
                                     = 567 cm2



3)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 56 cm. Find the area of shaded region, A. (Take π = 227)

Answer: 448


SOLUTION 1 :

Step 1: Radius of quadrant = 56 ÷ 2

                                            = 28 cm

Step 2: Area of quadrant = 14 x π x r2 = 14 x 227 x 2

                                                          = 616 cm2

Step 3: Area of square = 28 x 28
                                     = 784 cm2

Step 4: Area of B = Area of square - Area of quadrant
                            = 784 - 616
                            = 168 cm2

Step 5: Shaded area A = 784 - 168 - 168
                                     = 448 cm2



4)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 35 cm. Find the area of shaded region, A. (Take π = 227)

Answer: 175


SOLUTION 1 :

Step 1: Radius of quadrant = 35 ÷ 2

                                            = 17.5 cm

Step 2: Area of quadrant = 14 x π x r2 = 14 x 227 x 2

                                                          = 240.625 cm2

Step 3: Area of square = 17.5 x 17.5
                                     = 306.25 cm2

Step 4: Area of B = Area of square - Area of quadrant
                            = 306.25 - 240.625
                            = 65.625 cm2

Step 5: Shaded area A = 306.25 - 65.625 - 65.625
                                     = 175 cm2



5)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 42 cm. Find the area of shaded region, A. (Take π = 227)

Answer: 252


SOLUTION 1 :

Step 1: Radius of quadrant = 42 ÷ 2

                                            = 21 cm

Step 2: Area of quadrant = 14 x π x r2 = 14 x 227 x 2

                                                          = 346.5 cm2

Step 3: Area of square = 21 x 21
                                     = 441 cm2

Step 4: Area of B = Area of square - Area of quadrant
                            = 441 - 346.5
                            = 94.5 cm2

Step 5: Shaded area A = 441 - 94.5 - 94.5
                                     = 252 cm2



6)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 28 cm. Find the area of shaded region, A. (Take π = 227)

Answer: 112


SOLUTION 1 :

Step 1: Radius of quadrant = 28 ÷ 2

                                            = 14 cm

Step 2: Area of quadrant = 14 x π x r2 = 14 x 227 x 2

                                                          = 154 cm2

Step 3: Area of square = 14 x 14
                                     = 196 cm2

Step 4: Area of B = Area of square - Area of quadrant
                            = 196 - 154
                            = 42 cm2

Step 5: Shaded area A = 196 - 42 - 42
                                     = 112 cm2



7)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 70 cm. Find the area of shaded region, A. (Take π = 227)

Answer: 700


SOLUTION 1 :

Step 1: Radius of quadrant = 70 ÷ 2

                                            = 35 cm

Step 2: Area of quadrant = 14 x π x r2 = 14 x 227 x 2

                                                          = 962.5 cm2

Step 3: Area of square = 35 x 35
                                     = 1225 cm2

Step 4: Area of B = Area of square - Area of quadrant
                            = 1225 - 962.5
                            = 262.5 cm2

Step 5: Shaded area A = 1225 - 262.5 - 262.5
                                     = 700 cm2



8)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 14 cm. Find the area of shaded region, A. (Take π = 227)

Answer: 28


SOLUTION 1 :

Step 1: Radius of quadrant = 14 ÷ 2

                                            = 7 cm

Step 2: Area of quadrant = 14 x π x r2 = 14 x 227 x 2

                                                          = 38.5 cm2

Step 3: Area of square = 7 x 7
                                     = 49 cm2

Step 4: Area of B = Area of square - Area of quadrant
                            = 49 - 38.5
                            = 10.5 cm2

Step 5: Shaded area A = 49 - 10.5 - 10.5
                                     = 28 cm2



9)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 49 cm. Find the area of shaded region, A. (Take π = 227)

Answer: 343


SOLUTION 1 :

Step 1: Radius of quadrant = 49 ÷ 2

                                            = 24.5 cm

Step 2: Area of quadrant = 14 x π x r2 = 14 x 227 x 2

                                                          = 471.625 cm2

Step 3: Area of square = 24.5 x 24.5
                                     = 600.25 cm2

Step 4: Area of B = Area of square - Area of quadrant
                            = 600.25 - 471.625
                            = 128.625 cm2

Step 5: Shaded area A = 600.25 - 128.625 - 128.625
                                     = 343 cm2



10)  

The figure shows 2 identical semi-circles with a diameter of x cm. If x = 21 cm. Find the area of shaded region, A. (Take π = 227)

Answer: 63


SOLUTION 1 :

Step 1: Radius of quadrant = 21 ÷ 2

                                            = 10.5 cm

Step 2: Area of quadrant = 14 x π x r2 = 14 x 227 x 2

                                                          = 86.625 cm2

Step 3: Area of square = 10.5 x 10.5
                                     = 110.25 cm2

Step 4: Area of B = Area of square - Area of quadrant
                            = 110.25 - 86.625
                            = 23.625 cm2

Step 5: Shaded area A = 110.25 - 23.625 - 23.625
                                     = 63 cm2