Scroll:Measurement >> Area & Perimeter of Composite Figure >> ps (1743)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 18cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         18cm                 18cm

___cm2


Answer:_______________




2)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 28cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         28cm                 28cm

___cm2


Answer:_______________




3)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 10cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         10cm                 10cm

___cm2


Answer:_______________




4)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 20cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         20cm                 20cm

___cm2


Answer:_______________




5)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 34cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         34cm                 34cm

___cm2


Answer:_______________




6)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 24cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         24cm                 24cm

___cm2


Answer:_______________




7)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 40cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         40cm                 40cm

___cm2


Answer:_______________




8)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 26cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         26cm                 26cm

___cm2


Answer:_______________




9)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 36cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         36cm                 36cm

___cm2


Answer:_______________




10)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 14cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         14cm                 14cm

___cm2


Answer:_______________




 

1)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 18cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         18cm                 18cm

Answer: 208cm2


SOLUTION 1 :

           18cm                    18cm

 

Step 1: Diameter = 18cm

             Radius = 18 ÷ 2

                          = 9cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 9 x 9 ) - ( 12 x 9 x 9 )

                           = 23.126cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 23.126)

                                 → (π x 9 x 9) - (2 x 23.126)

                                  = 208.250cm2

                                  ≈ 208cm2



2)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 28cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         28cm                 28cm

Answer: 504cm2


SOLUTION 1 :

           28cm                    28cm

 

Step 1: Diameter = 28cm

             Radius = 28 ÷ 2

                          = 14cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 14 x 14 ) - ( 12 x 14 x 14 )

                           = 55.958cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 55.958)

                                 → (π x 14 x 14) - (2 x 55.958)

                                  = 503.916cm2

                                  ≈ 504cm2



3)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 10cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         10cm                 10cm

Answer: 64cm2


SOLUTION 1 :

           10cm                    10cm

 

Step 1: Diameter = 10cm

             Radius = 10 ÷ 2

                          = 5cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 5 x 5 ) - ( 12 x 5 x 5 )

                           = 7.138cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 7.138)

                                 → (π x 5 x 5) - (2 x 7.138)

                                  = 64.274cm2

                                  ≈ 64cm2



4)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 20cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         20cm                 20cm

Answer: 257cm2


SOLUTION 1 :

           20cm                    20cm

 

Step 1: Diameter = 20cm

             Radius = 20 ÷ 2

                          = 10cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 10 x 10 ) - ( 12 x 10 x 10 )

                           = 28.550cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 28.550)

                                 → (π x 10 x 10) - (2 x 28.550)

                                  = 257.100cm2

                                  ≈ 257cm2



5)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 34cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         34cm                 34cm

Answer: 743cm2


SOLUTION 1 :

           34cm                    34cm

 

Step 1: Diameter = 34cm

             Radius = 34 ÷ 2

                          = 17cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 17 x 17 ) - ( 12 x 17 x 17 )

                           = 82.510cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 82.510)

                                 → (π x 17 x 17) - (2 x 82.510)

                                  = 743.018cm2

                                  ≈ 743cm2



6)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 24cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         24cm                 24cm

Answer: 370cm2


SOLUTION 1 :

           24cm                    24cm

 

Step 1: Diameter = 24cm

             Radius = 24 ÷ 2

                          = 12cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 12 x 12 ) - ( 12 x 12 x 12 )

                           = 41.112cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 41.112)

                                 → (π x 12 x 12) - (2 x 41.112)

                                  = 370.224cm2

                                  ≈ 370cm2



7)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 40cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         40cm                 40cm

Answer: 1028cm2


SOLUTION 1 :

           40cm                    40cm

 

Step 1: Diameter = 40cm

             Radius = 40 ÷ 2

                          = 20cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 20 x 20 ) - ( 12 x 20 x 20 )

                           = 114.200cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 114.200)

                                 → (π x 20 x 20) - (2 x 114.200)

                                  = 1028.400cm2

                                  ≈ 1028cm2



8)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 26cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         26cm                 26cm

Answer: 434cm2


SOLUTION 1 :

           26cm                    26cm

 

Step 1: Diameter = 26cm

             Radius = 26 ÷ 2

                          = 13cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 13 x 13 ) - ( 12 x 13 x 13 )

                           = 48.250cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 48.250)

                                 → (π x 13 x 13) - (2 x 48.250)

                                  = 434.498cm2

                                  ≈ 434cm2



9)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 36cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         36cm                 36cm

Answer: 833cm2


SOLUTION 1 :

           36cm                    36cm

 

Step 1: Diameter = 36cm

             Radius = 36 ÷ 2

                          = 18cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 18 x 18 ) - ( 12 x 18 x 18 )

                           = 92.502cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 92.502)

                                 → (π x 18 x 18) - (2 x 92.502)

                                  = 833.004cm2

                                  ≈ 833cm2



10)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 14cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         14cm                 14cm

Answer: 126cm2


SOLUTION 1 :

           14cm                    14cm

 

Step 1: Diameter = 14cm

             Radius = 14 ÷ 2

                          = 7cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 7 x 7 ) - ( 12 x 7 x 7 )

                           = 13.990cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 13.990)

                                 → (π x 7 x 7) - (2 x 13.990)

                                  = 125.978cm2

                                  ≈ 126cm2