Scroll:Measurement >> Area & Perimeter of Composite Figure >> ps (1743)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 34cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         34cm                 34cm

___cm2


Answer:_______________




2)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 30cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         30cm                 30cm

___cm2


Answer:_______________




3)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 14cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         14cm                 14cm

___cm2


Answer:_______________




4)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 20cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         20cm                 20cm

___cm2


Answer:_______________




5)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 38cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         38cm                 38cm

___cm2


Answer:_______________




6)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 36cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         36cm                 36cm

___cm2


Answer:_______________




7)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 32cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         32cm                 32cm

___cm2


Answer:_______________




8)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 12cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         12cm                 12cm

___cm2


Answer:_______________




9)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 18cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         18cm                 18cm

___cm2


Answer:_______________




10)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 24cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         24cm                 24cm

___cm2


Answer:_______________




 

1)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 34cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         34cm                 34cm

Answer: 743cm2


SOLUTION 1 :

           34cm                    34cm

 

Step 1: Diameter = 34cm

             Radius = 34 ÷ 2

                          = 17cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 17 x 17 ) - ( 12 x 17 x 17 )

                           = 82.510cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 82.510)

                                 → (π x 17 x 17) - (2 x 82.510)

                                  = 743.018cm2

                                  ≈ 743cm2



2)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 30cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         30cm                 30cm

Answer: 578cm2


SOLUTION 1 :

           30cm                    30cm

 

Step 1: Diameter = 30cm

             Radius = 30 ÷ 2

                          = 15cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 15 x 15 ) - ( 12 x 15 x 15 )

                           = 64.238cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 64.238)

                                 → (π x 15 x 15) - (2 x 64.238)

                                  = 578.474cm2

                                  ≈ 578cm2



3)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 14cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         14cm                 14cm

Answer: 126cm2


SOLUTION 1 :

           14cm                    14cm

 

Step 1: Diameter = 14cm

             Radius = 14 ÷ 2

                          = 7cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 7 x 7 ) - ( 12 x 7 x 7 )

                           = 13.990cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 13.990)

                                 → (π x 7 x 7) - (2 x 13.990)

                                  = 125.978cm2

                                  ≈ 126cm2



4)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 20cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         20cm                 20cm

Answer: 257cm2


SOLUTION 1 :

           20cm                    20cm

 

Step 1: Diameter = 20cm

             Radius = 20 ÷ 2

                          = 10cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 10 x 10 ) - ( 12 x 10 x 10 )

                           = 28.550cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 28.550)

                                 → (π x 10 x 10) - (2 x 28.550)

                                  = 257.100cm2

                                  ≈ 257cm2



5)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 38cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         38cm                 38cm

Answer: 928cm2


SOLUTION 1 :

           38cm                    38cm

 

Step 1: Diameter = 38cm

             Radius = 38 ÷ 2

                          = 19cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 19 x 19 ) - ( 12 x 19 x 19 )

                           = 103.066cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 103.066)

                                 → (π x 19 x 19) - (2 x 103.066)

                                  = 928.130cm2

                                  ≈ 928cm2



6)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 36cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         36cm                 36cm

Answer: 833cm2


SOLUTION 1 :

           36cm                    36cm

 

Step 1: Diameter = 36cm

             Radius = 36 ÷ 2

                          = 18cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 18 x 18 ) - ( 12 x 18 x 18 )

                           = 92.502cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 92.502)

                                 → (π x 18 x 18) - (2 x 92.502)

                                  = 833.004cm2

                                  ≈ 833cm2



7)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 32cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         32cm                 32cm

Answer: 658cm2


SOLUTION 1 :

           32cm                    32cm

 

Step 1: Diameter = 32cm

             Radius = 32 ÷ 2

                          = 16cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 16 x 16 ) - ( 12 x 16 x 16 )

                           = 73.088cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 73.088)

                                 → (π x 16 x 16) - (2 x 73.088)

                                  = 658.176cm2

                                  ≈ 658cm2



8)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 12cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         12cm                 12cm

Answer: 93cm2


SOLUTION 1 :

           12cm                    12cm

 

Step 1: Diameter = 12cm

             Radius = 12 ÷ 2

                          = 6cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 6 x 6 ) - ( 12 x 6 x 6 )

                           = 10.278cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 10.278)

                                 → (π x 6 x 6) - (2 x 10.278)

                                  = 92.556cm2

                                  ≈ 93cm2



9)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 18cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         18cm                 18cm

Answer: 208cm2


SOLUTION 1 :

           18cm                    18cm

 

Step 1: Diameter = 18cm

             Radius = 18 ÷ 2

                          = 9cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 9 x 9 ) - ( 12 x 9 x 9 )

                           = 23.126cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 23.126)

                                 → (π x 9 x 9) - (2 x 23.126)

                                  = 208.250cm2

                                  ≈ 208cm2



10)  

The figure below is formed by two right-angled triangles, a circle and a circle. Given that WX = XY = XZ = 24cm, find the area of the shaded region rounding off your answer to the nearest whole number.

Π = 3.142

         24cm                 24cm

Answer: 370cm2


SOLUTION 1 :

           24cm                    24cm

 

Step 1: Diameter = 24cm

             Radius = 24 ÷ 2

                          = 12cm

Step 2: 12 rugby → quadrant - triangle

                           → ( 14 x π x r2 ) - ( 12 x b x h )

                           → ( 14 x π x 12 x 12 ) - ( 12 x 12 x 12 )

                           = 41.112cm2

Step 3: shaded area → big circle - rugby

                                 → (π x r2) - (2 x 41.112)

                                 → (π x 12 x 12) - (2 x 41.112)

                                  = 370.224cm2

                                  ≈ 370cm2