Scroll:geometry >> Angles >> saq (1560)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

74°

 o


Answer:_______________




2)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

50°

 o


Answer:_______________




3)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

44°

 o


Answer:_______________




4)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

64°

 o


Answer:_______________




5)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

70°

 o


Answer:_______________




6)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

48°

 o


Answer:_______________




7)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

56°

 o


Answer:_______________




8)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

72°

 o


Answer:_______________




9)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

76°

 o


Answer:_______________




10)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

46°

 o


Answer:_______________




 

1)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

74°

Answer: 127 o


SOLUTION 1 :

Step 1: PQR = (180 o - 74 o) ÷ 2 = 53o (isosceles triangle)

Step 2:   RQS = 180 o - 53 o = 127o (sum of angles on a straight line)



2)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

50°

Answer: 115 o


SOLUTION 1 :

Step 1: PQR = (180 o - 50 o) ÷ 2 = 65o (isosceles triangle)

Step 2:   RQS = 180 o - 65 o = 115o (sum of angles on a straight line)



3)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

44°

Answer: 112 o


SOLUTION 1 :

Step 1: PQR = (180 o - 44 o) ÷ 2 = 68o (isosceles triangle)

Step 2:   RQS = 180 o - 68 o = 112o (sum of angles on a straight line)



4)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

64°

Answer: 122 o


SOLUTION 1 :

Step 1: PQR = (180 o - 64 o) ÷ 2 = 58o (isosceles triangle)

Step 2:   RQS = 180 o - 58 o = 122o (sum of angles on a straight line)



5)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

70°

Answer: 125 o


SOLUTION 1 :

Step 1: PQR = (180 o - 70 o) ÷ 2 = 55o (isosceles triangle)

Step 2:   RQS = 180 o - 55 o = 125o (sum of angles on a straight line)



6)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

48°

Answer: 114 o


SOLUTION 1 :

Step 1: PQR = (180 o - 48 o) ÷ 2 = 66o (isosceles triangle)

Step 2:   RQS = 180 o - 66 o = 114o (sum of angles on a straight line)



7)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

56°

Answer: 118 o


SOLUTION 1 :

Step 1: PQR = (180 o - 56 o) ÷ 2 = 62o (isosceles triangle)

Step 2:   RQS = 180 o - 62 o = 118o (sum of angles on a straight line)



8)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

72°

Answer: 126 o


SOLUTION 1 :

Step 1: PQR = (180 o - 72 o) ÷ 2 = 54o (isosceles triangle)

Step 2:   RQS = 180 o - 54 o = 126o (sum of angles on a straight line)



9)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

76°

Answer: 128 o


SOLUTION 1 :

Step 1: PQR = (180 o - 76 o) ÷ 2 = 52o (isosceles triangle)

Step 2:   RQS = 180 o - 52 o = 128o (sum of angles on a straight line)



10)  

In triangle PQR, PQ = PR. 
PS is a straight line.
Find RQS.

46°

Answer: 113 o


SOLUTION 1 :

Step 1: PQR = (180 o - 46 o) ÷ 2 = 67o (isosceles triangle)

Step 2:   RQS = 180 o - 67 o = 113o (sum of angles on a straight line)