Scroll:Geometry >> Angles >> saq (1543)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  
29°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 29°.

Find ∠ SPR.


o


Answer:_______________




2)  
25°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 25°.

Find ∠ SPR.


o


Answer:_______________




3)  
39°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 39°.

Find ∠ SPR.


o


Answer:_______________




4)  
20°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 20°.

Find ∠ SPR.


o


Answer:_______________




5)  
31°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 31°.

Find ∠ SPR.


o


Answer:_______________




6)  
30°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 30°.

Find ∠ SPR.


o


Answer:_______________




7)  
35°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 35°.

Find ∠ SPR.


o


Answer:_______________




8)  
33°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 33°.

Find ∠ SPR.


o


Answer:_______________




9)  
34°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 34°.

Find ∠ SPR.


o


Answer:_______________




10)  
37°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 37°.

Find ∠ SPR.


o


Answer:_______________




 

1)  
29°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 29°.

Find ∠ SPR.


Answer: 31 o


SOLUTION 1 :

Step 1: PRQ = 180 o ÷ 3 = 60 o (equilateral triangle)

Step 2: PRS = 180 o - 60 o = 120 o (sum of angles on a straight line)

Step 3: SPR = 180 o - 120 o - 29 o = 31o (sum of angles on a straight line)



2)  
25°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 25°.

Find ∠ SPR.


Answer: 35 o


SOLUTION 1 :

Step 1: PRQ = 180 o ÷ 3 = 60 o (equilateral triangle)

Step 2: PRS = 180 o - 60 o = 120 o (sum of angles on a straight line)

Step 3: SPR = 180 o - 120 o - 25 o = 35o (sum of angles on a straight line)



3)  
39°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 39°.

Find ∠ SPR.


Answer: 21 o


SOLUTION 1 :

Step 1: PRQ = 180 o ÷ 3 = 60 o (equilateral triangle)

Step 2: PRS = 180 o - 60 o = 120 o (sum of angles on a straight line)

Step 3: SPR = 180 o - 120 o - 39 o = 21o (sum of angles on a straight line)



4)  
20°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 20°.

Find ∠ SPR.


Answer: 40 o


SOLUTION 1 :

Step 1: PRQ = 180 o ÷ 3 = 60 o (equilateral triangle)

Step 2: PRS = 180 o - 60 o = 120 o (sum of angles on a straight line)

Step 3: SPR = 180 o - 120 o - 20 o = 40o (sum of angles on a straight line)



5)  
31°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 31°.

Find ∠ SPR.


Answer: 29 o


SOLUTION 1 :

Step 1: PRQ = 180 o ÷ 3 = 60 o (equilateral triangle)

Step 2: PRS = 180 o - 60 o = 120 o (sum of angles on a straight line)

Step 3: SPR = 180 o - 120 o - 31 o = 29o (sum of angles on a straight line)



6)  
30°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 30°.

Find ∠ SPR.


Answer: 30 o


SOLUTION 1 :

Step 1: PRQ = 180 o ÷ 3 = 60 o (equilateral triangle)

Step 2: PRS = 180 o - 60 o = 120 o (sum of angles on a straight line)

Step 3: SPR = 180 o - 120 o - 30 o = 30o (sum of angles on a straight line)



7)  
35°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 35°.

Find ∠ SPR.


Answer: 25 o


SOLUTION 1 :

Step 1: PRQ = 180 o ÷ 3 = 60 o (equilateral triangle)

Step 2: PRS = 180 o - 60 o = 120 o (sum of angles on a straight line)

Step 3: SPR = 180 o - 120 o - 35 o = 25o (sum of angles on a straight line)



8)  
33°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 33°.

Find ∠ SPR.


Answer: 27 o


SOLUTION 1 :

Step 1: PRQ = 180 o ÷ 3 = 60 o (equilateral triangle)

Step 2: PRS = 180 o - 60 o = 120 o (sum of angles on a straight line)

Step 3: SPR = 180 o - 120 o - 33 o = 27o (sum of angles on a straight line)



9)  
34°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 34°.

Find ∠ SPR.


Answer: 26 o


SOLUTION 1 :

Step 1: PRQ = 180 o ÷ 3 = 60 o (equilateral triangle)

Step 2: PRS = 180 o - 60 o = 120 o (sum of angles on a straight line)

Step 3: SPR = 180 o - 120 o - 34 o = 26o (sum of angles on a straight line)



10)  
37°
 

The figure above is not drawn to scale.
PQR is an equilateral triangle.
SRQ is a straight line.  PSR = 37°.

Find ∠ SPR.


Answer: 23 o


SOLUTION 1 :

Step 1: PRQ = 180 o ÷ 3 = 60 o (equilateral triangle)

Step 2: PRS = 180 o - 60 o = 120 o (sum of angles on a straight line)

Step 3: SPR = 180 o - 120 o - 37 o = 23o (sum of angles on a straight line)