Scroll:Measurement >> Area of Triangle >> ps (1515)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 36cm.
What is the area of the triangle 




cm2


Answer:_______________




2)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 180cm.
What is the area of the triangle 




cm2


Answer:_______________




3)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 120cm.
What is the area of the triangle 




cm2


Answer:_______________




4)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 252cm.
What is the area of the triangle 




cm2


Answer:_______________




5)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 12cm.
What is the area of the triangle 




cm2


Answer:_______________




6)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 288cm.
What is the area of the triangle 




cm2


Answer:_______________




7)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 192cm.
What is the area of the triangle 




cm2


Answer:_______________




8)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 204cm.
What is the area of the triangle 




cm2


Answer:_______________




9)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 84cm.
What is the area of the triangle 




cm2


Answer:_______________




10)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 156cm.
What is the area of the triangle 




cm2


Answer:_______________




 

1)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 36cm.
What is the area of the triangle 




Answer: 54 cm2


SOLUTION 1 :

AB : BC : CA
3 : 4 : 5

 

Step 1:  3 + 4 +5 = 12 units

            12 units = 36 cm

             1 unit = 36 cm ÷ 12

                      = 3 cm

Step 2: AB → 3 units = 3 x 3 cm

                                   = 9 cm

Step 3:  BC → 4 units = 4 x 3 cm

                                   = 12 cm

Step 4: Area of triangle → 12 x 9 cm x 12 cm = 54 cm2



2)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 180cm.
What is the area of the triangle 




Answer: 1350 cm2


SOLUTION 1 :

AB : BC : CA
3 : 4 : 5

 

Step 1:  3 + 4 +5 = 12 units

            12 units = 180 cm

             1 unit = 180 cm ÷ 12

                      = 15 cm

Step 2: AB → 3 units = 3 x 15 cm

                                   = 45 cm

Step 3:  BC → 4 units = 4 x 15 cm

                                   = 60 cm

Step 4: Area of triangle → 12 x 45 cm x 60 cm = 1350 cm2



3)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 120cm.
What is the area of the triangle 




Answer: 600 cm2


SOLUTION 1 :

AB : BC : CA
3 : 4 : 5

 

Step 1:  3 + 4 +5 = 12 units

            12 units = 120 cm

             1 unit = 120 cm ÷ 12

                      = 10 cm

Step 2: AB → 3 units = 3 x 10 cm

                                   = 30 cm

Step 3:  BC → 4 units = 4 x 10 cm

                                   = 40 cm

Step 4: Area of triangle → 12 x 30 cm x 40 cm = 600 cm2



4)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 252cm.
What is the area of the triangle 




Answer: 2646 cm2


SOLUTION 1 :

AB : BC : CA
3 : 4 : 5

 

Step 1:  3 + 4 +5 = 12 units

            12 units = 252 cm

             1 unit = 252 cm ÷ 12

                      = 21 cm

Step 2: AB → 3 units = 3 x 21 cm

                                   = 63 cm

Step 3:  BC → 4 units = 4 x 21 cm

                                   = 84 cm

Step 4: Area of triangle → 12 x 63 cm x 84 cm = 2646 cm2



5)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 12cm.
What is the area of the triangle 




Answer: 6 cm2


SOLUTION 1 :

AB : BC : CA
3 : 4 : 5

 

Step 1:  3 + 4 +5 = 12 units

            12 units = 12 cm

             1 unit = 12 cm ÷ 12

                      = 1 cm

Step 2: AB → 3 units = 3 x 1 cm

                                   = 3 cm

Step 3:  BC → 4 units = 4 x 1 cm

                                   = 4 cm

Step 4: Area of triangle → 12 x 3 cm x 4 cm = 6 cm2



6)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 288cm.
What is the area of the triangle 




Answer: 3456 cm2


SOLUTION 1 :

AB : BC : CA
3 : 4 : 5

 

Step 1:  3 + 4 +5 = 12 units

            12 units = 288 cm

             1 unit = 288 cm ÷ 12

                      = 24 cm

Step 2: AB → 3 units = 3 x 24 cm

                                   = 72 cm

Step 3:  BC → 4 units = 4 x 24 cm

                                   = 96 cm

Step 4: Area of triangle → 12 x 72 cm x 96 cm = 3456 cm2



7)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 192cm.
What is the area of the triangle 




Answer: 1536 cm2


SOLUTION 1 :

AB : BC : CA
3 : 4 : 5

 

Step 1:  3 + 4 +5 = 12 units

            12 units = 192 cm

             1 unit = 192 cm ÷ 12

                      = 16 cm

Step 2: AB → 3 units = 3 x 16 cm

                                   = 48 cm

Step 3:  BC → 4 units = 4 x 16 cm

                                   = 64 cm

Step 4: Area of triangle → 12 x 48 cm x 64 cm = 1536 cm2



8)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 204cm.
What is the area of the triangle 




Answer: 1734 cm2


SOLUTION 1 :

AB : BC : CA
3 : 4 : 5

 

Step 1:  3 + 4 +5 = 12 units

            12 units = 204 cm

             1 unit = 204 cm ÷ 12

                      = 17 cm

Step 2: AB → 3 units = 3 x 17 cm

                                   = 51 cm

Step 3:  BC → 4 units = 4 x 17 cm

                                   = 68 cm

Step 4: Area of triangle → 12 x 51 cm x 68 cm = 1734 cm2



9)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 84cm.
What is the area of the triangle 




Answer: 294 cm2


SOLUTION 1 :

AB : BC : CA
3 : 4 : 5

 

Step 1:  3 + 4 +5 = 12 units

            12 units = 84 cm

             1 unit = 84 cm ÷ 12

                      = 7 cm

Step 2: AB → 3 units = 3 x 7 cm

                                   = 21 cm

Step 3:  BC → 4 units = 4 x 7 cm

                                   = 28 cm

Step 4: Area of triangle → 12 x 21 cm x 28 cm = 294 cm2



10)  

In the right-angled triangle shown below, the ratio of the length of sides AB : BC : CA is 3 : 4 : 5.
The perimeter of the triangle is 156cm.
What is the area of the triangle 




Answer: 1014 cm2


SOLUTION 1 :

AB : BC : CA
3 : 4 : 5

 

Step 1:  3 + 4 +5 = 12 units

            12 units = 156 cm

             1 unit = 156 cm ÷ 12

                      = 13 cm

Step 2: AB → 3 units = 3 x 13 cm

                                   = 39 cm

Step 3:  BC → 4 units = 4 x 13 cm

                                   = 52 cm

Step 4: Area of triangle → 12 x 39 cm x 52 cm = 1014 cm2