Scroll:Probability >> Addition theorem on probability >> saq (4496)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 If A and B are two events such that P(A) = 15 , P(B) = 32 and P(A∪B) = 28 , then find P(A∩B).

P(A∩B) =


Answer:_______________




2)  

 If A and B are two events such that P(A) = 25 , P(B) = 52 and P(A∪B) = 28 , then find P(A∩B).

P(A∩B) =


Answer:_______________




3)  

 If A and B are two events such that P(A) = 15 , P(B) = 36 and P(A∪B) = 28 , then find P(A∩B).

P(A∩B) =


Answer:_______________




4)  

 If A and B are two events such that P(A) = 23 , P(B) = 36 and P(A∪B) = 38 , then find P(A∩B).

P(A∩B) =


Answer:_______________




5)  

 If A and B are two events such that P(A) = 15 , P(B) = 52 and P(A∪B) = 38 , then find P(A∩B).

P(A∩B) =


Answer:_______________




6)  

 If A and B are two events such that P(A) = 15 , P(B) = 34 and P(A∪B) = 28 , then find P(A∩B).

P(A∩B) =


Answer:_______________




7)  

 If A and B are two events such that P(A) = 13 , P(B) = 34 and P(A∪B) = 38 , then find P(A∩B).

P(A∩B) =


Answer:_______________




8)  

 If A and B are two events such that P(A) = 25 , P(B) = 52 and P(A∪B) = 38 , then find P(A∩B).

P(A∩B) =


Answer:_______________




9)  

 If A and B are two events such that P(A) = 15 , P(B) = 52 and P(A∪B) = 28 , then find P(A∩B).

P(A∩B) =


Answer:_______________




10)  

 If A and B are two events such that P(A) = 23 , P(B) = 32 and P(A∪B) = 38 , then find P(A∩B).

P(A∩B) =


Answer:_______________




 

1)  

 If A and B are two events such that P(A) = 15 , P(B) = 32 and P(A∪B) = 28 , then find P(A∩B).

P(A∩B) = Answer: 2920


SOLUTION 1 :

Given:

P(A) = 15 , P(B) = 32 and P(A∪B) = 28 .

By Addition theorem on probability.

P(A∪B) = P(A) + P(B) - P(A∩B)

P(A∩B) = P(A) + P(B) - P(A∪B)

             = 15  +   32  -   28  

             = 16 + 120 - 20 ÷ 80

             =  136 - 20 ÷ 80

             =   11680  = 2920



2)  

 If A and B are two events such that P(A) = 25 , P(B) = 52 and P(A∪B) = 28 , then find P(A∩B).

P(A∩B) = Answer: 5320


SOLUTION 1 :

Given:

P(A) = 25 , P(B) = 52 and P(A∪B) = 28 .

By Addition theorem on probability.

P(A∪B) = P(A) + P(B) - P(A∩B)

P(A∩B) = P(A) + P(B) - P(A∪B)

             = 25  +   52  -   28  

             = 32 + 200 - 20 ÷ 80

             =  232 - 20 ÷ 80

             =  21 28 0  = 5320



3)  

 If A and B are two events such that P(A) = 15 , P(B) = 36 and P(A∪B) = 28 , then find P(A∩B).

P(A∩B) = Answer: 920


SOLUTION 1 :

Given:

P(A) = 15 , P(B) = 36 and P(A∪B) = 28 .

By Addition theorem on probability.

P(A∪B) = P(A) + P(B) - P(A∩B)

P(A∩B) = P(A) + P(B) - P(A∪B)

             = 15  +   36  -   28  

             = 48 + 120 - 60 ÷ 240

             =  168 - 60 ÷ 240

             =   108240  = 920



4)  

 If A and B are two events such that P(A) = 23 , P(B) = 36 and P(A∪B) = 38 , then find P(A∩B).

P(A∩B) = Answer: 1924


SOLUTION 1 :

Given:

P(A) = 23 , P(B) = 36 and P(A∪B) = 38 .

By Addition theorem on probability.

P(A∪B) = P(A) + P(B) - P(A∩B)

P(A∩B) = P(A) + P(B) - P(A∪B)

             = 23  +   36  -   38  

             = 96 + 72 - 54 ÷ 144

             =  168 - 54 ÷ 144

             =   114144  = 1924



5)  

 If A and B are two events such that P(A) = 15 , P(B) = 52 and P(A∪B) = 38 , then find P(A∩B).

P(A∩B) = Answer: 9340


SOLUTION 1 :

Given:

P(A) = 15 , P(B) = 52 and P(A∪B) = 38 .

By Addition theorem on probability.

P(A∪B) = P(A) + P(B) - P(A∩B)

P(A∩B) = P(A) + P(B) - P(A∪B)

             = 15  +   52  -   38  

             = 16 + 200 - 30 ÷ 80

             =  216 - 30 ÷ 80

             =   18680  = 9340



6)  

 If A and B are two events such that P(A) = 15 , P(B) = 34 and P(A∪B) = 28 , then find P(A∩B).

P(A∩B) = Answer: 710


SOLUTION 1 :

Given:

P(A) = 15 , P(B) = 34 and P(A∪B) = 28 .

By Addition theorem on probability.

P(A∪B) = P(A) + P(B) - P(A∩B)

P(A∩B) = P(A) + P(B) - P(A∪B)

             = 15  +   34  -   28  

             = 32 + 120 - 40 ÷ 160

             =  152 - 40 ÷ 160

             =   112160  = 710



7)  

 If A and B are two events such that P(A) = 13 , P(B) = 34 and P(A∪B) = 38 , then find P(A∩B).

P(A∩B) = Answer: 1724


SOLUTION 1 :

Given:

P(A) = 13 , P(B) = 34 and P(A∪B) = 38 .

By Addition theorem on probability.

P(A∪B) = P(A) + P(B) - P(A∩B)

P(A∩B) = P(A) + P(B) - P(A∪B)

             = 13  +   34  -   38  

             = 32 + 72 - 36 ÷ 96

             =  104 - 36 ÷ 96

             =   6896  = 1724



8)  

 If A and B are two events such that P(A) = 25 , P(B) = 52 and P(A∪B) = 38 , then find P(A∩B).

P(A∩B) = Answer: 10140


SOLUTION 1 :

Given:

P(A) = 25 , P(B) = 52 and P(A∪B) = 38 .

By Addition theorem on probability.

P(A∪B) = P(A) + P(B) - P(A∩B)

P(A∩B) = P(A) + P(B) - P(A∪B)

             = 25  +   52  -   38  

             = 32 + 200 - 30 ÷ 80

             =  232 - 30 ÷ 80

             =   20280  = 10140



9)  

 If A and B are two events such that P(A) = 15 , P(B) = 52 and P(A∪B) = 28 , then find P(A∩B).

P(A∩B) = Answer: 4920


SOLUTION 1 :

Given:

P(A) = 15 , P(B) = 52 and P(A∪B) = 28 .

By Addition theorem on probability.

P(A∪B) = P(A) + P(B) - P(A∩B)

P(A∩B) = P(A) + P(B) - P(A∪B)

             = 15  +   52  -   28  

             = 16 + 200 - 20 ÷ 80

             =  216 - 20 ÷ 80

             =   19680  = 4920



10)  

 If A and B are two events such that P(A) = 23 , P(B) = 32 and P(A∪B) = 38 , then find P(A∩B).

P(A∩B) = Answer: 4 32 4


SOLUTION 1 :

Given:

P(A) = 23 , P(B) = 32 and P(A∪B) = 38 .

By Addition theorem on probability.

P(A∪B) = P(A) + P(B) - P(A∩B)

P(A∩B) = P(A) + P(B) - P(A∪B)

             = 23  +   32  -   38  

             = 32 + 72 - 18 ÷ 48

             =  104 - 18 ÷ 48

             =   8648  = 4 32 4